物联网学报 ›› 2023, Vol. 7 ›› Issue (1): 18-26.doi: 10.11959/j.issn.2096-3750.2023.00326

• 专题:面向情景的智能网络与按需组网 • 上一篇    下一篇

面向无人机集群协同感知的多智能体资源分配策略

王志宏1,2, 冷甦鹏1,2, 熊凯1,2   

  1. 1 电子科技大学信息与通信工程学院,四川 成都 611731
    2 电子科技大学(深圳)高等研究院,广东 深圳 518110
  • 修回日期:2022-12-29 出版日期:2023-03-30 发布日期:2023-03-01
  • 作者简介:王志宏(1997- ),男,电子科技大学博士生,主要研究方向为无人机集群资源分配、语义通信和机器学习
    冷甦鹏(1973- ),男,电子科技大学教授、博士生导师,主要研究方向为物联网、车联网、新一代宽带无线网络、无线自组织网络、智能交通信息系统的资源管理、介质访问控制、路由、组网与互联、智能算法理论及技术应用等
    熊凯(1991- ),男,电子科技大学在站博士后,主要研究方向为车联网资源分配、移动边缘计算和机器学习
  • 基金资助:
    国家自然科学基金资助项目(62171104)

Multi-agent resource allocation strategy for UAV swarm-based cooperative sensing

Zhihong WANG1,2, Supeng LENG1,2, Kai XIONG1,2   

  1. 1 School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
    2 Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
  • Revised:2022-12-29 Online:2023-03-30 Published:2023-03-01
  • Supported by:
    The National Natural Science Foundation of China(62171104)

摘要:

在智能物联网技术发展的推动下,无人机集群已广泛用于应急、救援等场景的感知监测。无人机在任务区域自动感知发现任务目标,邻近无人机组成协作感知与协作计算任务群组,协同完成数据的感知、采集和处理。然而,重复的感知资源以及多任务间的计算资源供需不平衡,会造成额外的计算与通信开销,增大端到端处理时延。为了应对这一挑战,提出了一种结合仿生学和多智能体独立强化学习的多任务资源分配策略,基于局部的任务信息进行资源协同分配决策。该方法用任务情景信息浓度表示各个任务的资源需求,并通过情景信息在各任务群组间的扩散,动态更新各任务异构资源需求。同时,结合独立多智能体强化学习方法进行智能决策,以对各任务异构资源进行智能协同分配。仿真结果表明,所提方案不仅能够有效缩短任务执行时间,还可显著提高计算资源利用率。

关键词: 无人机集群, 资源分配, 独立强化学习, 仿生学, 多智能体

Abstract:

Driven by the development of intelligent internet of things (IoT) technology, unmanned aerial vehicle (UAV) swarms have been widely used for sensing and monitoring in emergency and rescue scenarios.The UAVs automatically sense and discover mission targets in the mission area, recruiting neighboring UAVs to form perception and computation task groups to collaboratively complete the perception, acquisition and processing of data.However, repetitive sensory data and imbalance in the supply and demand of computational resources between multiple tasks cause additional computational and communication overheads and increase the end-to-end processing latency.To address this challenge, a multi-task resource allocation approach combining bionics and multi-agent independent reinforcement learning was proposed, making collaborative resource allocation decisions based on local task information.The method represents the resource requirements of individual tasks as situational information concentrations and dynamically updates the heterogeneous resource requirements of each task by spreading the situational information across task groups.At the same time, it combines multi-agent independent reinforcement learning methods for intelligent decision making in order to collaboratively allocate the heterogeneous resources of each task.Simulation results show that this solution can not only effectively reduce the task execution time, but also significantly improve the computational resource utilization.

Key words: UAV swarm, resource allocation, independent reinforcement learning, bionics, multi-agent

中图分类号: 

No Suggested Reading articles found!