物联网学报 ›› 2021, Vol. 5 ›› Issue (3): 56-69.doi: 10.11959/j.issn.2096-3750.2021.00215
徐勇军1,2, 杨浩克1, 叶迎晖2, 陈前斌1, 卢光跃2
修回日期:
2021-01-08
出版日期:
2021-09-30
发布日期:
2021-09-01
作者简介:
徐勇军(1986- ),男,博士,重庆邮电大学副教授,主要研究方向为反向散射通信、认知无线电、异构无线网络传输技术等基金资助:
Yongjun XU1,2, Haoke YANG1, Yinghui YE2, Qianbin CHEN1, Guangyue LU2
Revised:
2021-01-08
Online:
2021-09-30
Published:
2021-09-01
Supported by:
摘要:
随着物联网技术的发展,无线网络呈现出大规模用户接入、高功耗、高吞吐量需求等特点。为了满足传输和降低能耗的需求,反向散射通信技术被认为是解决上述问题最有效的方案之一。面对复杂的网络场景,提高网络的频谱效率、系统容量以及节点的能量管理,成为了当前反向散射通信资源分配领域亟待解决的问题。针对该问题,着重对反向散射通信网络资源分配算法进行了综述。首先,介绍了反向散射通信的基本概念,并对不同的反向散射通信网络架构进行了分析;然后,根据不同的网络类型、优化目标以及天线数量,对反向散射通信网络的资源分配算法进行了阐述;最后,对反向散射通信网络资源分配问题所面临的挑战以及未来的研究趋势进行了展望。
中图分类号:
徐勇军, 杨浩克, 叶迎晖, 陈前斌, 卢光跃. 反向散射通信网络资源分配综述[J]. 物联网学报, 2021, 5(3): 56-69.
Yongjun XU, Haoke YANG, Yinghui YE, Qianbin CHEN, Guangyue LU. A survey on resource allocation in backscatter communication networks[J]. Chinese Journal on Internet of Things, 2021, 5(3): 56-69.
[1] | LIU W C , HUANG K B , ZHOU X Y ,et al. Next generation backscatter communication:systems,techniques,and applications[J]. EURASIP Journal on Wireless Communications and Networking, 2019(1): 1-11. |
[2] | MOU X L , SUN H J . Wireless power transfer:survey and roadmap[C]// 2015 IEEE 81st Vehicular Technology Conference. Piscataway:IEEE Press, 2015: 1-5. |
[3] | PONNIMBADUGE P T D , JAYAKODY D N K , SHARMA S K ,et al. Simultaneous wireless information and power transfer (SWIPT):recent advances and future challenges[J]. IEEE Communications Surveys & Tutorials, 2018,20(1): 264-302. |
[4] | XU Y J , LI G Q , YANG Y ,et al. Robust resource allocation and power splitting in SWIPT enabled heterogeneous networks:a robust minimax approach[J]. IEEE Internet of Things Journal, 2019,6(6): 10799-10811. |
[5] | VAN HUYNH N , HOANG D T , LU X ,et al. Ambient backscatter communications:a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2889-2922. |
[6] | REZAEI F , TELLAMBURA C , HERATH S . Large-scale wireless-powered networks with backscatter communications-a comprehensive survey[J]. IEEE Open Journal of the Communications Society, 2020,1: 1100-1130. |
[7] | 王公仆, 熊轲, 刘铭 ,等. 反向散射通信技术与物联网[J]. 物联网学报, 2017,1(1): 67-75. |
WANG G P , XIONG K , LIU M ,et al. Backscatter communication technology and Internet of things[J]. Chinese Journal on Internet of Things, 2017,1(1): 67-75. | |
[8] | 陶琴, 钟财军, 张朝阳 . 面向无源物联网的环境反向散射通信技术[J]. 物联网学报, 2019,3(2): 28-34. |
TAO Q , ZHONG C J , ZHANG Z Y . Ambient backscatter communica-tions technology for batteryless IoT[J]. Chinese Journal on Internet of Things, 2019,3(2): 28-34. | |
[9] | 郭颖, 王公仆, 李宗辉 ,等. 基于无源反向散射技术的智能标签:应用与挑战[J]. 物联网学报, 2020,4(3): 20-29. |
GUO Y , WANG G P , LI Z H ,et al. Smart tags based on the batteryless backscatter technology:applications and challenges[J]. Chinese Jour-nal on Internet of Things, 2020,4(3): 20-29. | |
[10] | STOCKMAN H . Communication by means of reflected power[J]. Proceedings of the IRE, 1948,36(10): 1196-1204. |
[11] | GRIFFIN J D , DURGIN G D . Complete link budgets for backscatter-radio and RFID systems[J]. IEEE Antennas and Propagation Magazine, 2009,51(2): 11-25. |
[12] | LIU V , PARKS A , TALLA V ,et al. Ambient backscatter:wireless communication out of thin air[C]// Proceedings of the ACM SIGCOMM 2013 conference on SIGCOOM. New York:ACM Press, 2013: 39-50. |
[13] | KELLOGG B , PARKS A , GOLLAKOTA S ,et al. Wi-Fi backscatter:internet connectivity for RF-powered devices[C]// Procedings of the 2014 ACM conference on SIGCOMM. New York:ACM Press, 2014: 607-618. |
[14] | BOYER C , ROY S . Backscatter communication and RFID:coding,energy,and MIMO analysis[J]. IEEE Transactions on Communications, 2014,62(3): 770-785. |
[15] | KIM D , INGRAM M A , SMITH W W . Measurements of small-scale fading and path loss for long range RF tags[J]. IEEE Transactions on Antennas and Propagation, 2003,51(8): 1740-1749. |
[16] | KIMIONIS J , BLETSAS A , SAHALOS J N . Increased range bistatic scatter radio[J]. IEEE Transactions on Wireless Communications, 2014,62(3): 1091-1104. |
[17] | LU X , NIYATO D , JIANG H ,et al. Ambient backscatter assisted wireless powered communications[J]. IEEE Wireless Communications, 2018,25(2): 170-177. |
[18] | CHOI S H , KIM D I . Backscatter radio communication for wireless powered communication networks[C]// 2015 21st Asia-Pacific Conference on Communications. IEEE, 2015: 370-374. |
[19] | LIU Y W , QIN Z J , ELKASHLAN M ,et al. Nonorthogonal multiple access for 5G and beyond[J]. Proceedings of the IEEE, 2017,105(12): 2347-2381. |
[20] | XU Y J , HU R Q , LI G Q . Robust energy-efficient maximization for cognitive NOMA networks under channel uncertainties[J]. IEEE Internet of Things Journal, 2020,7(9): 8318-8330. |
[21] | XU Y J , LI G Q . Optimal and robust interference efficiency maximization for multicell heterogeneous networks[J]. IEEE Access, 2019,7: 102406-102416. |
[22] | XU Y J , LI G Q , TANG J H ,et al. Robust resource allocation for uplink sum rate maximization in multi-cell heterogeneous networks[C]// 2018 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE,Press, 2018: 1-6. |
[23] | XU Y J , HU R Q , QIAN Y . Robust max-min fairness energy efficiency in NOMA-based heterogeneous networks[C]// ICC 2020 - 2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020: 1-6. |
[24] | XU Y J , HU Y , CHEN Q B ,et al. Optimal power allocation for multiuser OFDM-based cognitive heterogeneous networks[J]. China Communications, 2017,14(9): 52-61. |
[25] | XU Y J , HU Y , CHEN Q B ,et al. Robust resource allocation for multi-tier cognitive heterogeneous networks[C]// 2017 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2017: 1-6. |
[26] | XU Y J , YANG Y , LI G Q ,et al. Robust resource allocation and transmission time optimization for OFDMA-based heterogeneous networks[C]// 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2019: 1-6. |
[27] | WU Q Q , ZENG Y , ZHANG R . Joint trajectory and communication design for UAV-enabled multiple access[C]// GLOBECOM 2017-2017 IEEE Global Comnunications Conference. Piscataway:IEEE Press, 2017: 1-6. |
[28] | 窦中兆, 赵文晶, 刘杨 ,等. 高速铁路场景下环境反向散射辅助的无线传输方案[J]. 电讯技术, 2020,60(11): 1303-1310. |
DOU Z Z , ZHAO W J , LIU Y ,et al. Transmission schemes and link budget for backscatter aided wireless communications on high speed rails[J]. Telecommunication Engineering, 2020,60(11): 1303-1310. | |
[29] | ZHAO W J , WANG G P , AI B ,et al. Backscatter aided wireless communications on high-speed rails:capacity analysis and transceiver design[J]. IEEE Journal on Selected Areas in Communications, 2020,38(12): 2864-2874. |
[30] | 徐龙腾 . 环境反向散射通信的性能分析与资源分配研究[D]. 南京:南京航空航天大学, 2019. |
XU L T . Performance analysis and resource management of ambient backscatter communication[D]. Nanjing:Nanjing University of Aero-nautics and Astronautics, 2019. | |
[31] | LING Z , HU F Y , LI D . Optimal resource allocation in point-to-point wireless body area network with backscatter communication[C]// 2020 International Conference on Computing,Networking and Communications(ICNC). Piscataway:IEEE Press, 2020: 780-784. |
[32] | GUO H Y , LIANG Y C , LONG R Z ,et al. Resource allocation for symbiotic radio system with fading channels[J]. IEEE Access, 2019,7: 34333-34347. |
[33] | HUA M , SWINDLEHURST A L , LI C G ,et al. UAV-aided backscatter networks:joint UAV trajectory and protocol design[C]// 2019 IEEE Global Communications Conference. Piscataway:IEEE Press, 2019: 1-6. |
[34] | HUA M , YANG L X , LI C G ,et al. Throughput maximization for UAV-aided backscatter communication networks[J]. IEEE Transactions on Communications, 2020,68(2): 1254-1270. |
[35] | DARSENA D , GELLI G , VERDE F . Resource allocation for sensors with wireless power transfer and ambient backscatter transmission[C]// 2017 International Symposium on Wireless Communication Systems(ISWCS). Piscataway:IEEE Press, 2017: 366-371. |
[36] | XU Y J , GUI G . Optimal resource allocation for wireless powered multi-carrier backscatter communication networks[J]. IEEE Wireless Communications Letters, 2020,9(8): 1191-1195. |
[37] | HOANG D T , NIYATO D , WANG P ,et al. The tradeoff analysis in RF-powered backscatter cognitive radio networks[C]// 2016 IEEE Global Communications Conference(GLOBECOM). Piscataway:IEEE Press, 2016: 1-6. |
[38] | HOANG D T , NIYATO D , WANG P ,et al. Ambient backscatter:a new approach to improve network performance for RF-powered cognitive radio networks[J]. IEEE Transactions on Communications, 2017,65(9): 3659-3674. |
[39] | HOANG D T , NIYATO D , WANG P ,et al. Optimal time sharing in RF-powered backscatter cognitive radio networks[C]// 2017 IEEE International Conference on Communications. Piscataway:IEEE Press, 2017: 1-6. |
[40] | ANH T T , LUONG N C , NIYATO D ,et al. Deep reinforcement learning for time scheduling in RF-powered backscatter cognitive radio networks[C]// 2019 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2019: 1-7. |
[41] | LIU Y F , SHENG X T , FANG K P ,et al. Energy efficiency maximization in bistatic backscatter communications with QoS constraint[C]// 2019 IEEE 19th International Conference on Communication Technology (ICCT). Piscataway:IEEE Press, 2019: 920-925. |
[42] | YE Y H , SHI L Q , HU R Q ,et al. Energy-efficient resource allocation for wirelessly powered backscatter communications[J]. IEEE Communications Letters, 2019,23(8): 1418-1422. |
[43] | KISHORE R , GURUGOPINATH S , SOFOTASIOS P C ,et al. Opportunistic ambient backscatter communication in RF-powered cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2019,5(2): 413-426. |
[44] | 徐勇军, 谷博文, 陈前斌 ,等. 基于能效最大的无线供电反向散射网络资源分配算法[J]. 通信学报, 2020,41(10): 202-210. |
XU Y J , GU B W , CHEN Q B ,et al. Energy efficiency maximization resource allocation algorithm in wireless-powered backscatter com-munication network[J]. Journal on Communications, 2020,41(10): 202-210. | |
[45] | ZHANG Y , LI B , GAO F F ,et al. A robust design for ultra reliable ambient backscatter communication systems[J]. IEEE Internet of Things Journal, 2019,6(5): 8989-8999. |
[46] | YANG G , YUAN D D , LIANG Y C ,et al. Optimal resource allocation in full-duplex ambient backscatter communication networks for wireless-powered IoT[J]. IEEE Internet of Things Journal, 2019,6(2): 2612-2625. |
[47] | LIAO Y T , YANG G , LIANG Y C . Resource allocation in NOMA-enhanced full-duplex symbiotic radio networks[J]. IEEE Access, 2020,8: 22709-22720. |
[48] | YANG G , XU X Y , LIANG Y C . Resource allocation in NOMA-enhanced backscatter communication networks for wireless powered IoT[J]. IEEE Wireless Communications Letters, 2020,9(1): 117-120. |
[49] | XIAO S , GUO H Y , LIANG Y C . Resource allocation for full-duplex-enabled cognitive backscatter networks[J]. IEEE Transactions on Wireless Communications, 2019,18(6): 3222-3235. |
[50] | CHEN W F , LI C M , GONG S M ,et al. Joint transmission scheduling and power allocation in wirelessly powered hybrid radio networks[C]// 2019 International Conference on Computing,Networking and Communications (ICNC). Piscataway:IEEE Press, 2019: 515-519. |
[51] | LYU B , YANG Z , GUI G ,et al. Wireless powered communication networks assisted by backscatter communication[J]. IEEE Access, 2017,5: 7254-7262. |
[52] | RAMEZANI P , JAMALIPOUR A . Throughput maximization in backscatter assisted wireless powered communication networks[C]// ICC 2019-2019 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2019: 1-6. |
[53] | HUYNH N V , HOANG D T , NGUYEN D N ,et al. Reinforcement learning approach for RF-powered cognitive radio network with ambient backscatter[C]// 2018 IEEE Global Communications Conference(GLOBECOM). Piscataway:IEEE Press, 2018: 1-6. |
[54] | PARK K H , MUNIR D , KIM J S ,et al. Integrating RF-powered backscatter with underlay cognitive radio networks[C]// 2017 International Conference on Information Networking (ICOIN). Piscataway:IEEE Press, 2017: 288-292. |
[55] | SEO H , LEE C . A new GA-based resource allocation scheme for a reader-to-reader interference problem in RFID systems[C]// 2010 IEEE International Conference on Communications. Piscataway:IEEE Press, 2010: 1-5. |
[56] | LYU B , GUO H , YANG Z ,et al. Throughput maximization for hybrid backscatter assisted cognitive wireless powered radio networks[J]. IEEE Internet of Things Journal, 2018,5(3): 2015-2024. |
[57] | VAN H N , HOANG D T , NIYATO D ,et al. Optimal time scheduling for wireless-powered backscatter communication Networks[J]. IEEE Wireless Communications Letters, 2018,7(5): 820-823. |
[58] | YANG G , DAI R , LIANG Y C . Energy-efficient UAV backscatter communication with joint trajectory and resource optimization[C]// ICC 2019-2019 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2019: 1-6. |
[59] | 施丽琴, 叶迎晖, 卢光跃 . 无线供能边缘计算网络中系统计算能效最大化资源分配方案[J]. 通信学报, 2020,41(10): 59-69. |
SHI L Q , YE Y H , LU G Y . Computation energy efficiency maximiza-tion based resource allocation scheme in wireless powered mobile edge computing network[J]. Journal on Communications, 2020,41(10): 59-69. | |
[60] | YANG H H , YE Y H , CHU X L . Max-min energy-efficient resource allocation for wireless powered backscatter networks[J]. IEEE Wireless Communications Letters, 2020,9(5): 688-692. |
[61] | WANG P , WANG N , DABAGHCHIAN M ,et al. Optimal resource allocation for secure multi-user wireless powered backscatter communication with artificial noise[C]// IEEE INFOCOM 2019-IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2019: 460-468. |
[62] | WANG S , XIA M H , WU Y C . Backscatter data collection with unmanned ground vehicle:mobility management and power allocation[J]. IEEE Transactions on Wireless Communications, 2019,18(4): 2314-2328. |
[63] | WANG F , ZHANG X . Joint WiFi offloading and resource allocation for RF-powered wireless networks assisted by ambient backscatter[C]// 2018 IEEE International Conference on Communications(ICC). Piscataway:IEEE Press, 2018: 1-6. |
[64] | ZOU Y Z , XU J , GONG S M ,et al. Backscatter-aided hybrid data offloading for wireless powered edge sensor networks[C]// 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019: 1-6. |
[65] | ZHAO B Q , WANG H M , JIANG J C . Safeguarding backscatter RFID communication against proactive eavesdropping[C]// ICC 2020 - 2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020: 1-6. |
[66] | 叶迎晖, 施丽琴, 卢光跃 . 反向散射辅助的无线供能通信网络中用户能效公平性研究[J]. 通信学报, 2020,41(7): 84-94. |
YE Y H , SHI L Q , LU G Y . User-centric energy efficiency fairness in backscatter-assisted wireless powered communication network[J]. Journal on Communications, 2020,41(7): 84-94. | |
[67] | CHU Z , HAO W M , XIAO P ,et al. Resource allocations for symbiotic radio with finite block length backscatter link[J]. IEEE Internet of Things Journal, 2020,7(9): 8192-8207. |
[68] | MISHRA D , LARSSON E G . Optimal channel estimation for reciprocity-based backscattering with a full-duplex MIMO reader[J]. IEEE Transactions on Signal Processing, 2019,67(6): 1662-1677. |
[69] | RAMEZANI P , JAMALIPOUR A . Optimal resource allocation in backscatter assisted WPCN with practical energy harvesting model[J]. IEEE Transactions on Vehicular Technology, 2019,68(12): 12406-12410. |
[70] | MISHRA D , LARSSON E G . Sum throughput maximization in multi-tag backscattering to multiantenna reader[J]. IEEE Transactions on Communications, 2019,67(8): 5689-5705. |
[71] | YANG Q , WANG H M , ZHENG T X ,et al. Wireless powered asynchronous backscatter networks with sporadic short packets:performance analysis and optimization[J]. IEEE Internet of Things Journal, 2018,5(2): 984-997. |
[72] | KWAN J C , FAPOJUWO A O . Optimized wireless energy harvesting sensor network with backscatter communication and beamforming[C]// 2019 IEEE 90th Vehicular Technology Conference (VTC299-Fall). Piscataway:IEEE Press, 2019: 1-6. |
[73] | MISHRA D , LARSSON E G . Multi-tag backscattering to MIMO reader:channel estimation and throughput fairness[J]. IEEE Transactions on Wireless Communications, 2019,18(12): 5584-5599. |
[74] | LI L H , HUANG X X , FANG X M ,et al. Efficient hierarchical multiple access for ambient backscatter wireless networks[C]// 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019: 1-6. |
[75] | MA W Y , WANG W , JIANG T . Energy beamforming for wireless information and power transfer in backscatter multiuser networks[C]// 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019: 1-6. |
[76] | ALEVIZOS P N , BLETSAS A . Inference-based resource allocation for multi-cell backscatter sensor networks[C]// 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-6. |
[77] | YANG G , HO C K , GUAN Y L . Multi-antenna wireless energy transfer for backscatter communication systems[J]. IEEE Journal on Selected Areas in Communications, 2015,33(12): 2974-2987. |
[78] | LYU B , YANG Z , XIE T Y ,et al. Optimal time allocation in relay assisted backscatter communication systems[C]// 2018 IEEE 87th Vehicular Technology Conference (VTC-spring). Piscataway:IEEE Press, 2018: 1-5. |
[79] | LYU B , YANG Z , GUO H Y ,et al. Relay cooperation enhanced backscatter communication for Internet of things[J]. IEEE Internet of Things Journal, 2019,6(2): 2860-2871. |
[80] | LYU B , HOANG D T . Optimal time scheduling in relay assisted batteryless IoT networks[J]. IEEE Wireless Communications Letters, 2020,9(5): 706-710. |
[81] | LI D . Backscatter communication via harvest-then-transmit relaying[J]. IEEE Transactions on Vehicular Technology, 2020,69(6): 6843-6847. |
[82] | JIA X L , ZHOU X Y . Decode-and-forward relaying using a backscatter device:power allocation and BER analysis[C]// 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019: 1-6. |
[83] | ZHENG C M , CHENG W C , ZHANG H L . Optimal resource allocation for two-user and single-DF-relay network with ambient backscatter[J]. IEEE Access, 2019,7: 91375-91389. |
[84] | KIM S H , KIM D I . Backscatter based cooperative transmission in wireless-powered heterogeneous networks[C]// 2019 IEEE 90th Vehicular Technology Conference. Piscataway:IEEE Press, 2019: 1-5. |
[85] | LIU M H , JIANG R , Xu Y Y . Dual-hop wireless powered communication networks assisted by backscatter[C]// 2020 International Conference on Computing,Networking and Communications (ICNC). Piscataway:IEEE Press, 2020: 198-203. |
[86] | LONG R Z , YANG G , PEI Y Y ,et al. Transmit beamforming for cooperative ambient backscatter communication systems[C]// GLOBECOM 2017-2017 IEEE Global Communications Conference. Piscataway:IEEE Press, 2017: 1-6. |
[87] | YANG G , ZHANG J P , LIANG Y C . Optimal beamforming in cooperative cognitive backscatter networks for wireless-powered IoT[C]// 2018 IEEE International Conference on Communication Systems (ICCS). Piscataway:IEEE Press, 2018: 56-61. |
[88] | LYU B , HOANG D T , YANG Z . User cooperation in wireless-powered backscatter communication networks[J]. IEEE Wireless Communications Letters, 2019,8(2): 632-635. |
[89] | GONG S M , XU J , GAO L ,et al. Passive relaying scheme via backscatter communications in cooperative wireless networks[C]// 2018 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2018: 1-6. |
[90] | GONG S M , HUANG X X , XU J ,et al. Backscatter relay communications powered by wireless energy beamforming[J]. IEEE Transactions on Communications, 2018,66(7): 3187-3200. |
[91] | LYU B , HOANG D T , YANG Z Z . Backscatter then forward:a relaying scheme for batteryless IoT networks[J]. IEEE Wireless Communications Letters, 2020,9(4): 562-566. |
[92] | XU J , LI J C , GONG S M ,et al. Passive relaying game for wireless powered Internet of things in backscatter-aided hybrid radio networks[J]. IEEE Internet of Things Journal, 2019,6(5): 8933-8944. |
[93] | GONG S M , GAO L , XU J ,et al. Exploiting backscatter-aided relay communications with hybrid access model in device-to-device networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2019,5(4): 835-848. |
[94] | XIE Y T , XU Z Z , GONG S M ,et al. Backscatter-assisted hybrid relaying strategy for wireless powered IoT communications[C]// 2019 IEEE Global Communications Conference (GLOBECOM). Piscataway:IEEE Press, 2019: 1-6. |
[1] | 王志宏, 冷甦鹏, 熊凯. 面向无人机集群协同感知的多智能体资源分配策略[J]. 物联网学报, 2023, 7(1): 18-26. |
[2] | 汤蓓, 王倩, 陈思光. 融合射频能量采集的协同节能计算迁移研究[J]. 物联网学报, 2023, 7(1): 83-92. |
[3] | 刘耀, 何岳园, 周红静, 李超良, 李闯. 移动边缘计算中基于资源联合分配的部分计算卸载方法[J]. 物联网学报, 2023, 7(1): 140-148. |
[4] | 孙君, 赵尚维康. 工业物联网中基于Sarsa算法的节能计算卸载方案[J]. 物联网学报, 2022, 6(3): 82-90. |
[5] | 陈九九, 郭彩丽, 冯春燕, 刘传宏. 智能网联环境下面向语义通信的资源分配[J]. 物联网学报, 2022, 6(3): 47-57. |
[6] | 张琪, 蒋宇娜, 葛晓虎, 李永会. 基于最优运输理论的物联网边缘计算资源优化机制[J]. 物联网学报, 2021, 5(2): 60-70. |
[7] | 周鹏,徐金城,杨博. 工业物联网中基于边缘计算的跨域计算资源分配与任务卸载[J]. 物联网学报, 2020, 4(2): 96-104. |
[8] | 王承祥, 黄杰, 王海明, 高西奇, 尤肖虎, 郝阳. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020, 4(1): 19-32. |
[9] | 代玥玥,张科,张彦. 区块链赋能6G[J]. 物联网学报, 2020, 4(1): 111-120. |
[10] | 王鹏飞,邸博雅,宋令阳,韩竹. 6G异构边缘计算[J]. 物联网学报, 2020, 4(1): 121-130. |
[11] | 王志朋,曹斌,张钦宇. 基于需求预测的云无线接入网计算资源分配策略研究[J]. 物联网学报, 2019, 3(4): 1-8. |
[12] | 李一倩,刘留,李慧婷,张琨,袁泽. 工业物联网无线信道特性研究[J]. 物联网学报, 2019, 3(4): 34-47. |
[13] | 杨佳雨,胡杰,冷甦鹏,杨鲲. 一种具有顽健性的无线数能网络的时隙资源分配和多用户选择算法[J]. 物联网学报, 2019, 3(3): 34-40. |
[14] | 熊凯,冷甦鹏,张可,刘浩. 车联雾计算中的异构接入与资源分配算法研究[J]. 物联网学报, 2019, 3(2): 20-27. |
[15] | 陶琴,钟财军,张朝阳. 面向无源物联网的环境反向散射通信技术[J]. 物联网学报, 2019, 3(2): 28-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|