通信学报 ›› 2015, Vol. 36 ›› Issue (Z1): 60-64.doi: 10.11959/j.issn.1000-436x.2015282

• 学术论文 • 上一篇    下一篇

基于Dempster-Shafer理论的GHSOM入侵检测方法

苏洁,董伟伟,许璇,刘帅,谢立鹏   

  1. 哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080
  • 出版日期:2015-11-25 发布日期:2015-12-29
  • 基金资助:
    黑龙江省自然科学基金资助项目;黑龙江省教育科学规划课题基金资助项目;黑龙江省普通高等学校新世纪优秀人才培养计划基金资助项目;黑龙江省博士后基金资助项目;黑龙江省教育厅科学面上研究基金资助项目

GHSOM intrusion detection based on Dempster-Shafer theory

Jie SU,Wei-wei DONG,Xuan XU,Shuai LIU,Li-peng XIE   

  1. School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China
  • Online:2015-11-25 Published:2015-12-29
  • Supported by:
    The Natural Science Foundation of Heilongjiang Province;Scientific Planning Issues of Education in Heilongjiang Province;Research Fund for the Program of New Century Excellent Talents in Heilongjiang Provincial University;Post Doctoral Fund of Heilongjiang

摘要:

结合证据推理DS理论,提出了基于Dempster-Shafer理论的GHSOM神经网络入侵检测方法,一方面处理数据不确定性中的随机性和模糊性问题,可以在噪音环境下保持良好的检测率,此外通过证据融合理论缩小数据集,有效控制网络的动态增长。实验结果表明,基于 Dempster-Shafer 理论的 GHSOM 入侵检测方法实现了对子网拓展规模在检测中的动态控制,提升了在网络规模不断扩展时的动态适应性,在噪音环境下具有良好的检测准确率,提升了GHSOM入侵检测方法的扩展性。

关键词: Dempster-Shafer理论, 增量式GHSOM神经网络, 入侵检测, 网络安全

Abstract:

On the basis of incremental GHSOM,the GHSOM neural network intrusion detection based on the theory of evidence reasoning method was put forward.It can deal with the uncertainty caused by randomness and fuzziness,as well as can constantly narrowing assumptions set by accumulate the evidence,effectively control dynamic growth of network and keep a good accuracy in noise environment.Experiments show that GHSOM intrusion detection method based on the Dempster Shafer theory realized the dynamic control for the scale of expended subnet during the process of detection.It has the better detection accuracy in the noise environment and improves the adaptability and extensibility of incremental GHSOM neural network intrusion detection method when the scale of network is expanded.

Key words: Dempster-Shafer theory, incremental GHSOM neural networks, intrusion detection, network security

[1] 姜启广. TD-SCDMA与2G共址网络规划探讨[J]. 电信科学, 2009, 25(11): 81 -85 .
[2] 张拥华,杜飞明,吴代文. 基于信息熵的蚁群聚类DBSCAN改进算法[J]. 通信学报, 2012, 33(Z2): 42 -293 .
[3] 吴耀辉,李有明,邵鹏飞. 一种新型的OFDMA比例公平资源分配算法[J]. 电信科学, 2014, 30(6): 79 -85 .
[4] 李子木,傅怡琦,潘 丽. 大规模IPv4/IPv6演进环境下的地址管理关键技术与应用[J]. 通信学报, 2014, 35(Z1): 16 -86 .
[5] 徐凯硕,袁 华. CoolView中的日志管理子系统的设计和实现[J]. 通信学报, 2014, 35(Z1): 25 -133 .
[6] 王继东,沈成彬,蒋铭,王成巍. EPON承载传统铜缆业务解决方案研究[J]. 电信科学, 2010, 26(8): 19 -23 .
[7] 杨晓元,吴立强,张敏情,张 薇. 基于R-LWE的公钥加密方案[J]. 通信学报, 2013, 34(2): 4 -30 .
[8] 雷 磊,许宗泽. 基于地理位置信息和功率控制的ad hoc网络并行MAC协议[J]. 通信学报, 2008, 29(9): 12 -90 .
[9] 吕冠中,马远东. 一种网络视频行业应用解决方案[J]. 电信科学, 2015, 31(4): 49 -53 .
[10] 马春光,张秉政,孙原,王慧强. 基于按对平衡设计的异构无线传感器网络密钥预分配方案[J]. 通信学报, 2010, 31(1): 1 -43 .