大数据 ›› 2017, Vol. 3 ›› Issue (4): 91-103.doi: 10.11959/j.issn.2096-0271.2017045
王崇骏
出版日期:
2017-07-01
发布日期:
2017-08-07
作者简介:
王崇骏(1975-),男,博士,南京大学计算机科学与技术系及软件新技术国家重点实验室教授、博士生导师,主要研究方向为自主Agent及多Agent系统、复杂网络理论及应用、大数据分析及智能系统。截至2016年底,主持和参与包括“973”项目、国家发展和改革委员会专项、工业和信息化部产业化基金、国家自然科学基金、国家社会科学基金、省自然科学基金及支撑计划在内的国家及省部级基金与企事业资助项目50余项。在教育医疗类惠民行业、优政兴业类政府领域、互联网新经济领域有30余项科研成果获得产品化和商品化推广。
基金资助:
Chongjun WANG
Online:
2017-07-01
Published:
2017-08-07
Supported by:
摘要:
各边利益主体对大数据价值的共同期盼,引发了社会各界对大数据的普遍关注。不同利益主体的自有利益使然,各边的价值期望是不同的,但这些迥异的价值期望恰恰都是大数据价值实现的目标。尝试从大数据的多边定义和理解出发,梳理不同研究视角的相关研究以及不同利益角色的价值期望,介绍了相关研究及产业化现状,并给出了实践可行的方法、思路和策略。
中图分类号:
王崇骏. 大数据价值期望探讨[J]. 大数据, 2017, 3(4): 91-103.
Chongjun WANG. Discussions of the value expectations of big data[J]. Big Data Research, 2017, 3(4): 91-103.
[1] | 王崇骏 . 大数据思维与应用攻略[M]. 北京: 机械工业出版社, 2016. |
WANG C J . Big data thinking and application raiders[M]. Beijing: China Machine Press, 2016. | |
[2] | SCARDAMALIA M , BEREITE C . Computer support for knowledge-building communities[J]. Journal of the Learning Sciences, 1994,3(3): 265-283. |
[3] | 李国杰, 程学旗 . 大数据研究:未来科技及经济社会发展的重大战略领域[J]. 中国科学院院刊, 2012(6): 647-657. |
LI G J , CHENG X Q . Research status and scientific thinking of big data[J]. Bulletin of the Chinese Academy of Sciences, 2012(6): 647-657. | |
[4] | 维克托·迈尔·舍恩伯, 肯尼思·库克耶 . 大数据时代:生活、工作与思维的大变革[M].盛杨燕,周涛,译. 杭州: 浙江人民出版社, 2013. |
MAYER-SCH?NBERGER V , CUKIER K . Big data:a revolution that will transform how we live,work and think[M]. Translated by SHENG Y Y,ZHOU T. Hangzhou: Zhejiang People’s Publishing House, 2013. | |
[5] | 郭华东, 王力哲, 陈方 ,等. 科学大数据与数字地球[J]. 科学通报, 2014(12): 1047-1054. |
GUO H D , WANG L Z , CHEN F ,et al. Scientific big data and digital earth[J]. Chinese Science Bulletin, 2014(12): 1047-1054. | |
[6] | 陈刚 . 科学研究大数据挑战[J]. 科学通报, 2015(5): 439-444. |
CHEN G . Challenges of big data in science researches[J]. Chinese Science Bulletin, 2015(5): 439-444. | |
[7] | 刘言, 蔡文生, 邵学广 . 大数据与化学数据挖掘[J]. 科学通报, 2015(8): 694-703. |
LIU Y , CAI W S , SHAO X G . Big data and chemical data mining[J]. Chinese Science Bulletin, 2015(8): 694-703. | |
[8] | KAISLER S , ARMOUR F , ESPINOSA J A ,et al. Big data:issues and challenges moving forward[C]// 46th Hawaii International Conference on System Sciences (HICSS),Jan 7-10,2013,Wailea,Maui,HI,USA. New Jersey:IEEE Press, 2013: 995-1004. |
[9] | JIN X , WAH B W , CHENG X ,et al. Significance and challenges of big data research[J]. Big Data Research, 2015,2(2): 59-64. |
[10] | WANG H , XU Z , FUJITA H ,et al. Towards felicitous decision making:an overview on challenges and trends of big data[J]. Information Sciences, 2016(s367): 747-765. |
[11] | 李学龙, 龚海刚 . 大数据系统综述[J]. 中国科学:信息科学, 2015,45(1): 1-44. |
LI X L , GONG H G . Summary on big data system[J]. SCIENTIA SINICA Informationis, 2015,45(1): 1-44. | |
[12] | 程学旗, 靳小龙, 王元卓 ,等. 大数据系统和分析技术综述[J]. 软件学报, 2014,25(9): 1889-1908. |
CHENG X Q , JIN X L , WANG Y Z ,et al. Survey on big data system and analytic technology[J]. Journal of Software, 2014,25(9): 1889-1908. | |
[13] | HUANG S J , CHEN S , ZHOU Z H . Multilabel active learning:query type matters[C]// 24th International Conference on Artificial Intelligence,July 25-31,2015,Buenos Aires,Argentina. New York:ACM Press, 2015: 946-952. |
[14] | ZHU Y , GAO W , ZHOU Z H . Onepass multi-view learning[C]// 7th Asian Conference on Machine Learning,November 20-22,2015,Hong Kong,China. New York:ACM Press, 2015: 407-422. |
[15] | HUANG S J , CHEN S , ZHOU Z H . Multi-label active learning:query type matters[C]// 24th International Conference on Artificial Intelligence,July 25-31,2015,Kyoto,Japan. New York:ACM Press, 2015: 946-952. |
[16] | ZHOU Z H . Ensemble learning[M]. Beijing: Tsinghua University Press, 2015: 411-416. |
[17] | ZHANG M L , ZHOU Z H . A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014,26(8): 1819-1837. |
[18] | NGUYEN C T , WANG X L , LIU J ,et al. Labeling complicated objects:multi-view multi-instance multi-label learning[C]// 28th AAAI Conference on Artificial Intelligence,July 27-31,2014,Québec City,Québec,Canada. New York:ACM Press, 2014: 2013-2019. |
[19] | WEI X S , WU J , ZHOU Z H . Scalable algorithms for multi-instance learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,28(4): 975-987. |
[20] | ZHU Y , TING K M , ZHOU Z H . Discover multiple novel labels in multi-instance multi-label learning[C]// 31st AAAI Conference on Artificial Intelligence,February 4-9,2017,San Francisco,USA.[S.l.:s.n.], 2017: 2977-2984 |
[21] | WEI X S , WU J , ZHOU Z H . Scalable multi-instance learning[C]// IEEE International Conference on Data Mining,Dec 14-17,2014,Québec,Canada. New Jersey:IEEE Press, 2014: 1037-1042. |
[22] | STEWART R , ERMON S . Label-free supervision of neural networks with physics and domain knowledge[C]// 31st AAAI Conference on Artificial Intelligence,February 4-9,2017,San Francisco,USA.[S.l.:s.n.], 2017: 2576-2582. |
[23] | JOUPPI N P , YOUNG C , PATIL N ,et al. In-datacenter performance analysis of a tensor processing unit[C]// 44th Annual International Symposium on Computer Architecture,June 24 - 28,2017,Toronto,Canada. New York:ACM Press, 2017: 1-12. |
[24] | SAYAR A . Hadoop optimization for massive image processing:case study face detection[J]. International Journal of Computers Communications & Control, 2014,9(6): 664-671. |
[25] | GU R , WANG S , WANG F ,et al. Cichlid:efficient large scale RDFS/OWL reasoning with spark[C]// 2015 IEEE International Parallel and Distributed Processing Symposium,May 25-29,2015,Orlando,USA. Washington,DC:IEEE Computer Society, 2015: 700-709. |
[26] | GU R , YANG X , YAN J ,et al. SHadoop:improving MapReduce performance by optimizing job execution mechanism in Hadoop clusters[J]. Journal of Parallel and Distributed Computing, 2014,74(3): 2166-2179. |
[27] | 顾荣, 严金双, 杨晓亮 ,等. Hadoop MapReduce短作业执行性能优化[J]. 计算机研究与发展, 2014,51(6): 1270-1280. |
GU R , YAN J S , YANG X L ,et al. Performance optimization for short job execution in Hadoop MapReduce[J]. Journal of Computer Research and Development, 2014,51(6): 1270-1280. | |
[28] | YANG M , MA R T B . Smooth task migration in Apache storm[C]// 2015 ACM SIGMOD International Conference on Management of Data,May 31-June 4,2015,Melbourne,Australia. New York:ACM Press, 2015: 2067-2068. |
[29] | ARMBRUST M , DAS T , DAVIDSON A ,et al. Scaling spark in the real world:performance and usability[J]. Proceedings of the VLDB Endowment, 2015,8(12): 1840-1843. |
[30] | ARMBRUST M , XIN R S , LIAN C ,et al. Spark sql:relational data processing in spark[C]// 2015 ACM SIGMOD International Conference on Management of Data,May 31-June 4,2015,Melbourne,Australia. New York:ACM Press, 2015: 1383-1394. |
[31] | VAN DER VEEN J S , VAN DER WAAIJ B , LAZOVIK E ,et al. Dynamically scaling apache storm for the analysis of streaming data[C]// 1st International Conference on Big Data Computing Service and Applications,March 30-April 2,2015,San Francisco,USA. New Jersey:IEEE Press, 2015: 154-161. |
[32] | SCHAEFER C , MANOJ P M . Enabling privacy mechanisms in apache storm[C]// 1st International Conference on Big Data Computing Service and Applications,March 30-April 2,2015,San Francisco,USA. New Jersey:IEEE Press, 2015: 102-109. |
[33] | BOSAGH ZADEH R , MENG X , ULANOV A ,et al. Matrix computations and optimization in apache spark[C]// 2016 ACM SIGKDD Knowledge Discovery and Data Mining (SIGKDD-16),August 13-17,2016,San Francisco,USA. New York:ACM Press, 2016: 31-38. |
[34] | ARMBRUST M , XIN R S , LIAN C ,et al. Spark sql:Relational data processing in spark[C]// 2015 ACM SIGMOD International Conference on Management of Data,May 31-June 4,2015,Melbourne,Australia. New York:ACM Press, 2015: 1383-1394. |
[35] | ZHAO S Y , XIANG R , SHI Y H ,et al. SCOPE:scalable composite optimization for learning on spark[C]// 31st AAAI Conference on Artificial Intelligence(AAAI-17),February 4-9,2017,San Francisco,USA.[S.l.:s.n.], 2017: 2928-2934. |
[36] | 中国电子信息产业发展研究院. 2016中国大数据产业生态地图[D]. 北京:中国电子信息产业发展研究院, 2016. |
China Center for Information Industry Development. 2016 Chinese big data industrial ecology map[D]. Beijing:China Center for Information Industry Development, 2016. | |
[37] | 王叁寿 . 大数据商业应用场景[M]. 北京: 机械工业出版社, 2016. |
WANG S S . Big data commercial application scenarios[M]. Beijing: China Machine PressPress, 2016. | |
[38] | DEAN J , GHEMAWAT S . MapReduce:simplified data processing on large clusters[J]. Communications, 2008,51(1): 107-113. |
[39] | GHEMAWAT S , GOBIOFF H , LEUNG S T . The Google file system[C]// 19th ACM Symposium on Operating Systems Principles(SOSP-03),October 19-22,2003,Bolton Landing,USA. New York:ACM Press, 2003,37(5): 29-43. |
[40] | CHANG F , DEAN J , GHEMAWAT S ,et al. Bigtable:a distributed storage system for structured data[J]. Transactions on Computer Systems, 2006,26(2): 4. |
[41] | SHVACHKO K , KUANG H , RADIA S ,et al. The Hadoop distributed file system[C]// IEEE 26th Symposium on Mass Storage Systems and Technologies(MSST-10),May 3-7,2010,Nevada,USA. New Jersey:IEEE Press, 2010: 1-10. |
[42] | BORTHAKUR D . The Hadoop distributed file system:architecture and design[J]. Hadoop Project Website, 2007,11(11): 1-10. |
[43] | 雷军, 叶航军, 武泽胜 ,等. 基于开源生态系统的大数据平台研究[J]. 计算机研究与发展, 2017,54(1): 80-93. |
LEI J , YE H J , WU Z S ,et al. Big data platform based on open source ecosystem[J]. Journal of Computer Research and Development, 2017,54(1): 80-93. | |
[44] | 唐斯斯, 刘叶婷 . 我国大数据交易亟待突破[J]. 中国发展观察, 2016(13): 19-21. |
TANG S S , LIU Y T . Chinese big data transactions need to break through[J]. China Development Observation, 2016(13): 19-21. | |
[45] | GOLDBERG A V , HARTLINE J D , WRIGHT A . Competitive auctions and digital goods[C]// ACM-SIAM Symposium on Discrete Algorithms(SODA-10),January 17-19,2010,Austin,USA.[S.l.:s.n.], 2001: 735-744. |
[46] | GOLDBERG A V , HARTLINE J D , KARLIN A R ,et al. Competitive auctions[J]. Games and Economic Behavior, 2006,55(2): 242-269. |
[47] | CHEN N , GRAVIN N , LU P . Optimal competitive auctions[C]// 46th Annual ACM Symposium on Theory of Computing(STOC-14),May 31-June 3,2014,New York,USA.[S.l.:s.n.], 2014: 253-262. |
[48] | LAVI R , NISAN N . Competitive analysis of incentive compatible on-line auctions[J]. Theoretical Computer Science, 2000,310(1): 159-180. |
[49] | LAVI R , NISAN N . Online ascending auctions for gradually expiring items[C]// 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-05),January 23-25,2005,Vancouver,Canada. Philadelphia:Society for Industrial and Applied Mathematics, 2005: 1146-1155. |
[50] | FRIEDMAN E J , PARKES D C . Pricing wifi at starbucks:issues in online mechanism design[C]// 4th ACM Conference on Electronic Commerce(EC-03),June 9 - 12,2003,San Diego,CA,USA. New York:ACM Press, 2003: 240-241. |
[51] | MASHAYEKHY L , NEJAD M M , GROSU D ,et al. An online mechanism for resource allocation and pricing in clouds[J]. IEEE Transactions on Computers, 2016,65(4): 1172-1184. |
[52] | MYERSON R B . Optimal auction design[J]. Mathematics of Operations Research, 1981,6(1): 58-73. |
[53] | 唐平中 . 计算经济学与最优机制设计问题[J]. 中国计算机学会通讯, 2013,9(10): 18-23. |
TANG P Z . Computational economics and optimal mechanism design[J]. Communications of the CCF, 2013,9(10): 18-23. | |
[54] | SUN J , QU H , CHAKRABARTI D ,et al. Neighborhood formation and anomaly detection in bipartite graphs[C]// 5th IEEE International Conference on Data Mining(ICDM-05),Nov 27-30,2005,Houston,TX,USA. New Jersey:IEEE Press, 2005: 1-8. |
[55] | RAZ O , KOOPMAN P , SHAW M . Semantic anomaly detection in online data sources[C]// 24rd International Conference on Software Engineering(ICSE-02),May 25,2002,Orlando,USA. New Jersey:IEEE Press, 2002: 302-312. |
[56] | 汤琪 . 大数据交易中的产权问题研究[J]. 图书与情报, 2016(4): 38-45. |
TANG Q . Study on the property right issues in big data trade[J]. Library and Information, 2016(4): 38-45. | |
[57] | REICHMAN J H , SAMUELSON P . Intellectual property rights in data[J]. Vanderbilt Law Review, 1997,50(4): 337-348. |
[1] | 钱海红, 王茂异, 熊贇. 高等教育数字化转型的现状与发展研究[J]. 大数据, 2023, 9(3): 56-70. |
[2] | 梅宏, 杜小勇, 金海, 程学旗, 柴云鹏, 石宣化, 靳小龙, 王亚沙, 刘驰. 大数据技术前瞻[J]. 大数据, 2023, 9(1): 1-20. |
[3] | 沈阳, 余梦珑. 元宇宙与大数据:时空智能中的数据洞察与价值连接[J]. 大数据, 2023, 9(1): 103-110. |
[4] | 陈静. 人文大数据及其在数字人文领域中的应用[J]. 大数据, 2022, 8(6): 3-14. |
[5] | 罗煜楚, 吴昊, 郭宇涵, 谭绍聪, 刘灿, 蒋瑞珂, 袁晓如. 数字人文中的可视化[J]. 大数据, 2022, 8(6): 74-93. |
[6] | 郑童哲恒, 李斌, 冯敏萱, 常博林, 王东波. 历史典籍的结构化探索——《史记·列传》数字人文知识库的构建与可视化研究[J]. 大数据, 2022, 8(6): 40-55. |
[7] | 李汶龙, 袁媛, 安筱鹏. 刍议大数据治理的三大基础思维[J]. 大数据, 2022, 8(4): 34-45. |
[8] | 汤奇峰, 邵志清, 叶雅珍. 数据交易中的权利确认和授予体系[J]. 大数据, 2022, 8(3): 40-53. |
[9] | 王陈慧子, 蔡玮. 元宇宙数字经济:现状、特征与发展建议[J]. 大数据, 2022, 8(3): 140-150. |
[10] | 杨玫, 李玮, 乔思渊, 刘巍. 中国大数据产业产值测算方法研究[J]. 大数据, 2022, 8(3): 151-160. |
[11] | 李德仁, 张过, 蒋永华, 沈欣, 刘伟玲. 论大数据视角下的地球空间信息学的机遇与挑战[J]. 大数据, 2022, 8(2): 3-14. |
[12] | 仇晓兰, 胡玉新, 上官松涛, 付琨. 遥感卫星大数据高精度一体化处理技术[J]. 大数据, 2022, 8(2): 15-27. |
[13] | 刘伟权, 王程, 臧彧, 胡倩, 于尚书, 赖柏锜. 基于遥感大数据的信息提取技术综述[J]. 大数据, 2022, 8(2): 28-57. |
[14] | 刘建强, 叶小敏, 兰友国. 我国海洋卫星遥感大数据及其应用服务[J]. 大数据, 2022, 8(2): 75-88. |
[15] | 杨何群, 王晓峰, 高彦青, 陆一闻, 麻炳欣, 王昕瑶. 数值天气预报对卫星大数据的需求分析[J]. 大数据, 2022, 8(2): 89-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|