[1] |
SHI J , YAO Y , CHEN R ,et al. Fast and concurrent RDF queries with RDMAbased distributed graph exploration[C]// The 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),November 2-4,2016,Savannah,USA. Berkeley:USENIX Association, 2016: 317-332.
|
[2] |
GURAJADA S , SEUFERT S , MILIARAKI I ,et al. TriAD:a distributed shared-nothing RDF engine based on asynchronous message passing[C]// The 2014 ACM SIGMOD International Conference on Management of Data,June 22-27,2014,Snowbird,USA. New York:ACM Press, 2014: 289-300.
|
[3] |
ZENG K , YANG J , WANG H ,et al. A distributed graph engine for web scale RDF data[J]. Proceedings of the VLDB Endowment, 2013,6(4): 265-276.
|
[4] |
MALEWICZ G , AUSTERN M H , BIK A J C ,et al. Pregel:a system for large-scale graph processing[C]// The 2010 ACM SIGMOD International Conference on Management of Data,August 11-13,2009,Indianapolis,USA. New York:ACM Press, 2010: 135-146.
|
[5] |
GONZALEZ J E , LOW Y , GU H ,et al. Powergraph:distributed graph-parallel computation on natural graphs[C]// The 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),October 8-10,2012,Hollywood,USA. Berkeley:USENIX Association, 2012: 17-30.
|
[6] |
CHEN R , SHI J , CHEN Y ,et al. Powerlyra:differentiated graph computation and partitioning on skewed graphs[J]. ACM Transactions on Parallel Computing, 2019,5(3):13.
|
[7] |
ZHU X , CHEN W , ZHENG W ,et al. Gemini:a computation-centric distributed graph processing system[C]// The 12th USENIX Symposium on Operating Systems Design and Implementation,November 2-4,2016,Savannah,USA. Berkeley:USENIX Association, 2016: 301-316.
|
[8] |
LOW Y , BICKSON D , GONZALEZ J ,et al. Distributed GraphLab:a framework for machine learning and data mining in the cloud[J]. Proceedings of the VLDB Endowment, 2012,5(8): 716-727.
|
[9] |
TSOURAKAKIS C , GKANTSIDIS C , RADUNOVIC B ,et al. Fennel:streaming graph partitioning for massive scale graphs[C]// The 7th ACM International Conference on Web Search and Data Mining,February 24-28,2014,New York,USA. New York:ACM Press, 2014: 333-342.
|
[10] |
WU M , YANG F , XUE J ,et al. GraM:scaling graph computation to the trillions[C]// The 6th ACM Symposium on Cloud Computing,August 27-29,2015,Kohala Coast,USA. New York:ACM Press, 2015: 408-421.
|
[11] |
ROY A , MIHAILOVIC I , ZWAENEPOEL W . X-Stream:edge-centric graph processing using streaming partitions[C]// The 24th ACM Symposium on Operating Systems Principles,November 3-6,2013,Farmington,USA. New York:ACM Press, 2013: 472-488.
|
[12] |
WANG Y , DAVIDSON A , PAN Y ,et al. Gunrock:a high-performance graph processing library on the GPU[J]. ACM SIGPLAN Notices, 2016,51(8):11.
|
[13] |
SHUN J , BLELLOCH G E . Ligra:alightweight graph processing framework for shared memory[J]. ACM SIGPLAN Notices, 2013,48(8): 135-146.
|
[14] |
ZHANG K , CHEN R , CHEN H . NUMAaware graph-structured analytics[J]. ACM SIGPLAN Notices, 2015,50(8): 183-193.
|
[15] |
MCCUNE R R , WENINGER T , MADEY G . Thinking like a vertex:a survey of vertex-centric frameworks for largescale distributed graph processing[J]. ACM Computing Surveys, 2015,48(2):25.
|
[16] |
GROSSMAN S , LITZ H , KOZYRAKIS C . Making pull-based graph processing performant[J]. ACM SIGPLAN Notices, 2018,53(1): 246-260.
|
[17] |
BLUMOFE R D , LEISERSON C E . Scheduling multithreaded computations by work stealing[J]. Journal of the ACM, 1999,46(5): 720-748.
|