大数据 ›› 2019, Vol. 5 ›› Issue (5): 58-78.doi: 10.11959/j.issn.2096-0271.2019042
赖永炫1,2,杨旭3,曹琦4,曹辉彬1,2,王田5,杨帆6
出版日期:
2019-09-15
发布日期:
2019-10-11
作者简介:
赖永炫(1981-),男,博士,厦门大学副教授,主要研究方向为交通大数据分析、车载网络。|杨旭(1975-),男,长春公交(集团)有限责任公司助理工程师,主要研究方向为公交排班管理和公交系统信息化。|曹琦(1982-),男,龙岩烟草工业有限责任公司工程师,主要从事生产制造信息化与自动化及质量控制领域方面的研究与应用工作。|曹辉彬(1997-),男,厦门大学信息学院硕士生,主要研究方向为交通大数据分析、车载网络。|王田(1982-),男,博士,华侨大学计算机科学与技术学院教授,主要研究方向为智能感知网络、交通大数据分析、车载网络。|杨帆(1982-),男,博士,厦门大学航空与航天学院副教授,主要研究方向为数据挖掘、聚类研究。
基金资助:
Yongxuan LAI1,2,Xu YANG3,Qi CAO4,Huibin CAO1,2,Tian WANG5,Fan YANG6
Online:
2019-09-15
Published:
2019-10-11
Supported by:
摘要:
目前,我国公交公司主要依靠经验丰富的工作人员估计车辆回场时间,进而进行车辆调度,此方式缺乏辅助的预测方法,常常造成较大的误差与错误的调度决策。从公交公司的实际需求出发,提出了一种基于动态特征选择的预测方法R-GBDT。R-GBDT利用特征选择组件和模型调参组件为预测组件提供符合线路特征的特征组合与参数,由融合组件对其他组件的结果进行融合,形成一个用于预测最终时间间隔的框架。结果表明,相对于其他算法,所提方法能大大提高公交运行时长预测的准确度。
中图分类号:
赖永炫, 杨旭, 曹琦, 曹辉彬, 王田, 杨帆. 一种基于Gradient Boosting的公交车运行时长预测方法[J]. 大数据, 2019, 5(5): 58-78.
Yongxuan LAI, Xu YANG, Qi CAO, Huibin CAO, Tian WANG, Fan YANG. A bus running length prediction method based on Gradient Boosting[J]. Big Data Research, 2019, 5(5): 58-78.
表6
停留时长特征"
字段名 | 含义 |
weatherid | 天气 |
weekdayid | 星期几 |
isworkday | 是否是工作日 |
isholiday | 是否是节假日 |
hourid | 小时 |
groupid | 段内分组 |
time_group | 时间分组 |
week_staytime_6 | 第6站1周内同时段平均停留 |
week_staytime_7 | 第7站1周内同时段平均停留 |
week_staytime_8 | 第8站1周内同时段平均停留 |
week_staytime_13 | 第13站1周内同时段平均停留 |
week_staytime_19 | 第19站1周内同时段平均停留 |
week_staytime_22 | 第22站1周内同时段平均停留 |
thrday_staytime_15 | 第15站3天内同时段平均停留 |
thrday_staytime_22 | 第22站3天内同时段平均停留 |
current_every_staytime_11 | 第11站最新的停留时长 |
current_every_staytime_16 | 第16站最新的停留时长 |
sum_week_staytime | 1周内平均总停留时长 |
表8
行驶时长特征"
字段名 | 含义 |
weekdayid | 星期几 |
time_group | 时间分组 |
week_runtime_2 | 第2站1周内同时段平均站间行驶 |
week_runtime_6 | 第6站1周内同时段平均站间行驶 |
week_runtime_9 | 第9站1周内同时段平均站间行驶 |
week_runtime_20 | 第20站1周内同时段平均站间行驶 |
thrday_runtime_1 | 第1站3天内同时段平均站间行驶 |
thrday_runtime_2 | 第2站3天内同时段平均站间行驶 |
thrday_runtime_4 | 第4站3天内同时段平均站间行驶 |
thrday_runtime_17 | 第17站3天内同时段平均站间行驶 |
thrday_runtime_23 | 第23站3天内同时段平均站间行驶 |
current_every_runtime_8 | 第8站最新的行驶时长 |
current_every_runtime_21 | 第21站最新的行驶时长 |
sum_week_runtime | 1周同时段平均行驶时长 |
sum_thrday_runtime | 3天同时段平均行驶时长 |
sum_current_runtime | 最新行驶时长 |
表9
总时长特征"
字段名 | 含义 |
predict_runtime | 预测的总站间行驶时长 |
predict_staytime | 预测的总站点停留时长 |
time_group | 时段分组 |
current_every_staytime_7 | 最新的第7站站点停留时长 |
current_every_staytime_10 | 最新的第10站站点停留时长 |
thrday_runtime_17 | 3天内第7站的平均站间运行时长 |
week_staytime_4 | 1周内第4站的平均站点停留时长 |
week_staytime_11 | 1周内第11站的平均站点停留时长 |
week_staytime_14 | 1周内第14站的平均站点停留时长 |
thrday_staytime_1 | 3天内第1站的平均站点停留时长 |
thrday_staytime_18 | 3天内第18站的平均站点停留时长 |
sum_current_time | 最新的总运行时长 |
[1] | 陆化普, 李瑞敏 . 城市智能交通系统的发展现状与趋势[J]. 工程研究-跨学科视野中的工程, 2014(1): 6-19. |
LU H P , LI R M . Developing trend of ITS and strategy suggestions[J]. Journal of Engineering Studies, 2014(1): 6-19. | |
[2] | LI Y G , FU K , WANG Z ,et al. Multi-task representation learning for travel time estimation[C]// The 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,August 19-23,2018,London,UK. New York:ACM Press, 2018: 1695-1 704. |
[3] | 曹宏, 何凤娟 . 深化城市轨道交通智能化综合管理研究[J]. 城市轨道交通研究, 2014,17(1): 74-77. |
CAO H , HE F J . Development of smart integrated information management in urban mass transit[J]. Urban Mass Transit, 2014,17(1): 74-77. | |
[4] | CHIEN S , YANG Z . Optimal feeder bus routes on irregular street networks[J]. Journal of Advanced Transportation, 2010,34(2): 213-248. |
[5] | WU J Q , SONG R , XU W T ,et al. Transit network optimization for feeder bus of BRT based on genetic algorithm[C]// 2013 4th International Conference on Digital Manufacturing & Automation,June 29-30,2013,Qingdao,China.Piscataway:IEEE Press, 2013 |
[6] | NEWELL G F . Some issues relating to the optimal design of bus routes[J]. Transportation Science, 1979,13(1): 20-35. |
[7] | GAO L , HU X , WANG W ,et al. An optimal bus departure plan under the condition of partially overlapping routes[C]// American Society of Civil Engineers 14th COTA International Conference of Transportation Professionals,July 4-7,2014,Changsha,China.[S.l.:s.n]. 2014: 1153-1163. |
[8] | CEDER A . Methods for creating bus timetables[J]. Transportation Research, 1987,21(1): 59-83. |
[9] | CEDER A , GOLANY B , TAL O . Creating bus timetables with maximal synchronization[J]. Transportation Research, 2001,35(10): 913-928. |
[10] | CEDER A . Bus frequency determination using passenger count data[J]. Transportation Research, 1984,18(5-6): 439-453. |
[11] | CHEN Q , LI C . An approach to bus-driver scheduling problem[C]// 2010 2nd WRI Global Congress on Intelligent Systems,December 16-17,2010,Wuhan,China.Piscataway:IEEE Press, 2010 |
[12] | KWAN R S K , WREN A , KWAN A S K . Hybrid genetic algorithms for scheduling bus and train drivers[C]// The 2000 Congress on Evolutionary Computation,July 16-19,2000,La Jolla,USA.Piscataway:IEEE Press, 2000. |
[13] | KLIEWER N , MELLOULI T , SUHL L . A time–space network based exact optimization model for multi-depot bus scheduling[J]. European Journal of Operational Research, 2006,175(3): 1616-1 627. |
[14] | BALL M , BODIN L , DIAL R . Matching based heuristic for scheduling mass transit crews and vehicles[J]. Transportation Science, 1983,17(1): 4-31. |
[15] | YU H , XIAO R , DU Y ,et al. A busarrival time prediction model based on historical traffic patterns[C]// The 2013 International Conference on Computer Sciences and Applications,December 14-15,2013,Wuhan,China. Piscataway:IEEE Press, 2013. |
[16] | YU B , YANG Z Z , ZENG Q C . Bus arrival time prediction model based on support vector machine and Kalman filter[J]. China Journal of Highway and Transport, 2008,21(2): 89-92. |
[17] | LIN Y , YANG X , ZOU N ,et al. Real-time bus arrival time prediction:case study for Jinan,China[J]. Journal of Transportation Engineering, 2013,139(11): 1133-1140. |
[18] | PADMANABAN R P S , DIVAKAR K , VANAJAKSHI L ,et al. Development of a real-time bus arrival prediction system for Indian traffic conditions[J]. IET Intelligent Transport Systems, 2010,4(3): 189-200. |
[19] | BERREBI S J , WATKINS K E , LAVAL J A . A real-time bus dispatching policy to minimize passenger wait on a high frequency route[J]. Transportation Research Part B Methodological, 2015,81(Part 2): 377-389. |
[20] | SHEU J B . A fuzzy clustering approach to real-time demand-responsive bus dispatching control[J]. Fuzzy Sets and Systems, 2005,150(3): 437-455. |
[21] | 王麟珠, 苏庆列, 郑日博 . 基于Elman动态神经网络的公交到站时间预测[J]. 机电技术, 2012,35(1): 135-137. |
WANG L Z , SU Q L , ZHENG R B . Bus arrival time prediction based on Elman dynamic neural network[J]. Mechanical and Electrical Technology, 2012,35(1): 135-137. | |
[22] | 张强, 张艳艳 . 基于时间分段的公交车到站时间预测模型研究[J]. 数字技术与应用, 2014(11): 60-62. |
ZHANG Q , ZHANG Y Y . Study on prediction model of bus arrival time based on time segmentation[J]. Digital Technology and Application, 2014(11): 60-62. | |
[23] | 季彦婕, 陆佳炜, 陈晓实 ,等. 基于粒子群小波神经网络的公交到站时间预测[J]. 交通运输系统工程与信息, 2016,16(3): 60-66. |
JI Y J , LU J W , CHEN X S ,et al. Prediction model of bus arrival time based on particle swarm optimization and wavelet neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2016,16(3): 60-66. | |
[24] | 罗频捷, 温荷, 万里 . 基于遗传算法的模糊神经网络公交到站时间预测模型研究[J]. 计算机科学, 2016,43(S1): 87-89,108. |
LUO P J , WEN H , WAN L . Research on bus arrival time prediction model based on fuzzy neural network with genetic algorithm[J]. Computer Science, 2016,43(S1): 87-89,108. | |
[25] | 杨奕, 张雯蕊, 张灿 . 基于遗传算法的BP神经网络在公交车到站时间预测中的应用[J]. 现代商业, 2017(16): 38-40. |
YANG Y , ZHANG W R , ZHANG C . Application of BP neural network based on genetic algorithms in bus arrival time prediction[J]. Modern Business, 2017(16): 38-40. | |
[26] | 张昕, 姜佳佳, 刘进 . 基于SVM+GA的客运车辆到站时间预测[J]. 计算机与数字工程, 2017,45(6): 1062-1066,1085. |
ZHANG X , JIANG J J , LIU J . Coach bus arrival time prediction based on SVM and GA[J]. Computer and Digital Engineering, 2017,45(6): 1062-1066,1085. | |
[27] | 谢芳, 顾军华, 张素琪 ,等. 基于MapReduce聚类和神经网络的公交车到站时间预测模型[J]. 计算机应用, 2017,37(S1): 118-122. |
XIE F , GU J H , ZHANG S Q ,et al. Predicting model of bus arrival time based on MapReduce clustering and neural network[J]. Journal of Computer Applications, 2017,37(S1): 118-122. | |
[28] | O’SULLIVAN A , PEREIRA F C , ZHAO J ,et al. Uncertainty in bus arrival time predictions:treating heteroscedasticity with a metamodel approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2016,17(11): 1-11. |
[29] | SINN M , YOON W J , CALABRESE F ,et al. Predicting arrival times of buses using real-time GPS measurements[C]// International IEEE Conference on Intelligent Transportation Systems,September 16-19,2012,Anchorage,USA.Piscataway:IEEE Press, 2012. |
[30] | ABIDIN A F , KOLBERG M . Towards improved vehicle arrival time prediction in public transportation:integrating SUMO and Kalman filter models[C]// The 17th Uksim-amss International Conference on Modelling & Simulation,March 25-27,2015,Cambridge,UK.Piscataway:IEEE Press, 2015. |
[31] | JEONG R , RILETT L R . Bus arrival time prediction using artificial neural network model[C]// The 7th International IEEE Conference on Intelligent Transportation Systems,October 3-6,2004,Washington,USA.Piscataway:IEEE Press, 2004. |
[32] | MAITI S , PAL A , PAL A ,et al. Historical data based real time prediction of vehicle arrival time[C]// The 17th IEEE International Conference on Intelligent Transportation Systems,October 8-11,2014,Qingdao,China.Piscataway:IEEE Press, 2014. |
[33] | SCHAPIRE R E , SINGER Y . Improved boosting algorithms using confidencerated predictions[C]// The 11th Annual Conference on Computational Learning Theory,July 24-26,1998,Madison,USA. New York:ACM Press, 1998: 80-91. |
[34] | QUINLAN J R . Induction on decision tree[J]. Machine Learning, 1986,1(1): 81-106. |
[35] | JOACHIMS T , . Text categorization with support vector machines:learning with many relevant features[C]// The 10th European Conference on Machine Learning,April 21–23,1998,Chemnitz,Germany. Heidelberg:Springer, 1998: 137-142. |
[1] | 叶雅珍, 朱扬勇. 数字化转型服务平台:面向新竞争格局的企业竞争力建设[J]. 大数据, 2023, 9(3): 3-14. |
[2] | 王元卓, 张琨, 陆源. 漫威电影中的智能穿戴[J]. 大数据, 2023, 9(3): 181-183. |
[3] | 朱扬勇, 谢波峰. 数据财政:数字经济发展过程中的公共利益实现[J]. 大数据, 2023, 9(2): 163-166. |
[4] | 王元卓, 李子健, 陆源. 漫威电影中的图灵测试[J]. 大数据, 2023, 9(2): 167-169. |
[5] | 梅宏, 杜小勇, 金海, 程学旗, 柴云鹏, 石宣化, 靳小龙, 王亚沙, 刘驰. 大数据技术前瞻[J]. 大数据, 2023, 9(1): 1-20. |
[6] | 贺亚运, 彭俊清, 王健宗, 肖京. 节奏舞者:基于关键动作转换图和有条件姿态插值网络的3D舞蹈生成方法研究[J]. 大数据, 2023, 9(1): 23-37. |
[7] | 彭一非, 袁贞, 张旭龙, 姜桂林, 刘逾江. 基于数字孪生技术的元宇宙空气污染物浓度推断模型[J]. 大数据, 2023, 9(1): 38-50. |
[8] | 王元卓, 仇韫琦, 陆源. 漫威电影中的智能问答[J]. 大数据, 2023, 9(1): 153-155. |
[9] | 王元卓, 张琨, 陆源. 漫威电影中的知识图谱[J]. 大数据, 2022, 8(6): 153-155. |
[10] | 邓钇敏, 司世景, 王健宗, 李泽远, 肖京. 去中心化金融的交易机制综述[J]. 大数据, 2022, 8(4): 67-84. |
[11] | 王元卓, 张琨, 陆源. 漫威电影中的虹膜识别[J]. 大数据, 2022, 8(4): 173-175. |
[12] | 王陈慧子, 蔡玮. 元宇宙数字经济:现状、特征与发展建议[J]. 大数据, 2022, 8(3): 140-150. |
[13] | 王元卓, 江旭晖, 陆源. 漫威电影中的深度学习[J]. 大数据, 2022, 8(3): 161-163. |
[14] | 黄新波. 十四运会信息化系统大数据统一平台的设计与应用[J]. 大数据, 2022, 8(2): 158-167. |
[15] | 王金予, 魏欣然, 石文磊, 张佳. 强化学习在资源优化领域的应用[J]. 大数据, 2021, 7(5): 131-149. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|