[1] |
YAZDI M D , WANG Y , DI Q ,et al. Longterm association of air pollution and hospital admissions among medicare participants using a doubly robust additive model[J]. Circulation, 2021,143(16): 1584-1596.
|
[2] |
EBENSTEIN A , FAN M Y , GREENSTONE M ,et al. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(39): 10384-10389.
|
[3] |
SONG J , LU M X , LU J G ,et al. Acute effect of ambient air pollution on hospitalization in patients with hypertension:a timeseries study in Shijiazhuang,China[J]. Ecotoxicology and Environmental Safety, 2019,170: 286-292.
|
[4] |
寇江泽. 持续攻坚让蓝天白云常驻[N]. 人民日报, 2021-08-07.
|
|
KOU J Z . Continue in tackling difficulties,and make blue sky and white clouds permanent[N]. The People’s Daily, 2021-08-07.
|
[5] |
马元婧 . 基于深度学习的大气环境监测系统关键技术研究[D]. 北京:中国科学院大学, 2021:7.
|
|
MA Y J . Research on key technologies of atmospheric environment monitoring system based on deep learning[D]. Beijing:University of Chinese Academy of Sciences, 2021:7.
|
[6] |
KANG Y , CHEN J , CAO Y ,et al. A higherorder graph convolutional network for location recommendation of an air-quality-monitoring station[J]. Remote Sensing, 2021,13(8): 1600.
|
[7] |
JUTZELER A , LI J , FALTINGS B . A region-based model for estimating urban air pollution[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2014,28(1): 424-430.
|
[8] |
XU Y N , ZHU Y M , SHEN Y Y ,et al. Fine-grained air quality inference with remote sensing data and ubiquitous urban data[J]. ACM Transactions on Knowledge Discovery from Data, 2019,13(5): 1-27.
|
[9] |
ZHENG Y , LIU F R , HSIEH H P . U-Air:when urban air quality inference meets big data[C]// Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. New York:ACM Press, 2013: 1436-1444.
|
[10] |
YU H M , LI Q Y , WANG R ,et al. A deep calibration method for low-cost air monitoring sensors with multilevel sequence modeling[J]. IEEE Transactions on Instrumentation and Measurement, 2020,69(9): 7167-7179.
|
[11] |
WEI J , HUANG W , LI Z Q ,et al. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach[J]. Remote Sensing of Environment, 2019,231: 111221.
|
[12] |
杨颖川, 葛宝珠, 郝赛宇 ,等. 基于能见度及AOD数据的北京市PM2.5浓度的反演[J]. 气候与环境研究, 2020,25(5): 521-530.
|
|
YANG Y C , GE B Z , HAO S Y ,et al. Inversion of PM2.5 concentration in Beijing based on visibility and AOD data[J]. Climatic and Environmental Research, 2020,25(5): 521-530.
|
[13] |
王静, 杨复沫, 王鼎益 ,等. 北京市MODIS气溶胶光学厚度和PM2.5质量浓度的特征及其相关性[J]. 中国科学院研究生院学报, 2010,27(1): 10-16.
|
|
WANG J , YANG F M , WANG D Y ,et al. Characteristics and relationship of aerosol optical thickness and PM2.5 concentration over Beijing[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2010,27(1): 10-16.
|
[14] |
王文喜, 周芳, 万月亮 ,等. 元宇宙技术综述[J]. 工程科学学报, 2022,44(4): 744-756.
|
|
WANG W X , ZHOU F , WAN Y L ,et al. A survey of metaverse technology[J]. Chinese Journal of Engineering, 2022,44(4): 744-756.
|
[15] |
郑诚慧 . 元宇宙关键技术及与数字孪生的异同[J]. 网络安全技术与应用, 2022(9): 124-126.
|
|
ZHENG C H . Key technologies of the metauniverse and their similarities and differences with digital twin[J]. Network Security Technology & Application, 2022(9): 124-126.
|
[16] |
孟永辉 . 当数字货币不再是终局,区块链从理想进入现实[J]. 大数据时代, 2020(10): 6-13.
|
|
MENG Y H . Blockchain movesfrom ideal to reality as digital currencies are on the right track[J]. Big Data Time, 2020(10): 6-13.
|
[17] |
程祖国, 罗敏 . 环境偶双极的数字孪生及其应用[J]. 科技创新与应用, 2020(6): 170-171.
|
|
CHENG Z G , LUO M . Digital twin of environmental dipole and its application[J]. Technology Innovation and Application, 2020(6): 170-171.
|
[18] |
郎为民, 田尚保, 李宇鸽 ,等. 数字孪生技术架构研究[J]. 电信快报, 2022(8): 1-6.
|
|
LANG W M , TIAN S B , LI Y G ,et al. Research on the technical architecture of digital twin[J]. Telecommunications Information, 2022(8): 1-6.
|