大数据 ›› 2020, Vol. 6 ›› Issue (1): 35-46.doi: 10.11959/j.issn.2096-0271.2020004
出版日期:
2020-01-15
发布日期:
2020-02-21
作者简介:
孟小峰(1964- ),男,博士,中国人民大学信息学院教授,博士生导师,中国计算机学会会士,主要研究方向为数据库理论与系统、大数据管理系统、大数据隐私保护、大数据融合与智能、大数据实时分析、社会计算等|王雷霞(1994- ),女,中国人民大学信息学院博士生,主要研究方向为隐私保护|刘俊旭(1995- ),女,中国人民大学信息学院博士生,主要研究方向为隐私保护
基金资助:
Xiaofeng MENG(),Leixia WANG,Junxu LIU
Online:
2020-01-15
Published:
2020-02-21
Supported by:
摘要:
随着人工智能时代的到来,大数据中蕴含的价值被不断开发,但与此同时,用户的隐私泄露问题、数据垄断问题以及算法决策中的公平问题愈发凸显。为详细探究此类伦理问题,首先从数据发展的角度出发,探讨人工智能时代隐私、垄断与公平问题的产生环境及其独特性。而后,对这3个伦理问题逐一分析其现状及挑战,得出当前伦理问题产生的本质是数据获取、使用以及决策的不透明性,提出建立数据透明机制是解决这些问题的重要举措。
中图分类号:
孟小峰, 王雷霞, 刘俊旭. 人工智能时代的数据隐私、垄断与公平[J]. 大数据, 2020, 6(1): 35-46.
Xiaofeng MENG, Leixia WANG, Junxu LIU. Data privacy,monopoly and fairness for AI[J]. Big Data Research, 2020, 6(1): 35-46.
[1] | STOYANOVICH J , HOWE B , JAGADISH H V ,et al. Panel:a debate on data and algorithmic ethics[J]. Very Large Data Bases, 2018,11(12): 2165-2167. |
[2] | STOYANOVICH J , ABITEBOUL S , MIKLAU G ,et al. Data,responsibly:fairness,neutrality and transparency in data analysis[C]// International Conference on Extending Database Technology,March 15-18,2016,Bordeaux,France. Heidelberg:Springer, 2016: 718-719. |
[3] | GANTZ J , REINSEL D . The digital universe in 2020:big data,bigger digital shadows,and biggest growth in the far east[J]. IDC iView:IDC Analyze the Future, 2012(1): 1-16. |
[4] | BORGMAN C L . 大数据、小数据、无数据:网络世界的数据学术[M]. 孟小峰,等,译.北京: 机械工业出版社, 2017. |
BORGMAN C L . Big data,little data,no data:scholarship in the networked world[M]. Translated by MENG X F,et al. Beijing: China Machine PressPress, 2017. | |
[5] | 方滨兴, 贾焰, 李爱平 ,等. 大数据隐私保护技术综述[J]. 大数据, 2016,2(1): 1-18. |
FANG B X , JIA Y , LI A P ,et al. Privacy preserving in big data:a survey[J]. Big Data Research, 2016,2(1): 1-18. | |
[6] | 孟小峰, 张啸剑 . 大数据隐私管理[J]. 计算机研究与发展, 2015,52(2): 265-281. |
MENG X F , ZHANG X J . Big data management[J]. Journal of Computer Research and Development, 2015,52(2): 265-281. | |
[7] | 张啸剑, 孟小峰 . 面向数据发布和分析的差分隐私保护[J]. 计算机学报, 2014,37(4): 927-949. |
ZHANG X J , MENG X F . Differential privacy in data publication and analysis[J]. Chinese Journal of Computers, 2014,37(4): 927-949. | |
[8] | 叶青青, 孟小峰, 朱敏杰 ,等. 本地化差分隐私研究综述[J]. 软件学报, 2018,29(7): 159-183. |
YE Q Q , MENG X F , ZHU M J ,et al. Survey on local differential privacy[J]. Journal of Software, 2018,29(7): 159-183. | |
[9] | 刘俊旭, 孟小峰 . 机器学习的隐私保护研究综述[J]. 计算机研究与发展, 2019.已录用 |
LIU J X , MENG X F . Survey on privacypreserving machine learning[J]. Journal of Computer Research and Development, 2019,Accepted. | |
[10] | SWEENEY L . k-anonymity:a model for protecting privacy[J]. International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems, 2002,10(5): 557-570. |
[11] | LI N H , LI T C , VENKATASUBRAMANIAN S ,et al. Closeness:a new privacy measure for data publishing[J]. IEEE Transactions on Knowledge and Data Engineering, 2010,22(7): 943-956. |
[12] | XIAO X K , TAO Y F . M-invariance:towards privacy preserving republication of dynamic datasets[C]// The 2007 ACM SIGMOD International Conference on Management of Data,June 11-14,2007,Beijing,China. New York:ACM Press, 2007: 689-700. |
[13] | BU Y Y , FU A W C , WONG R C W ,et al. Privacy preserving serial data publishing by role composition[J]. Proceedings of the VLDB Endowment, 2008,1(1): 845-856. |
[14] | LI C , PALANISAMY B . ReverseCloak:protecting multi-level location privacy over road networks[C]// The 24th ACM International Conference on Information and Knowledge Management,October 18-23,2015,Melbourne,Australia. New York:ACM Press, 2015: 673-682. |
[15] | CHENG J , FU A C W , LIU J . K-Isomorphism:privacy preserving network publication against structural attacks[C]// The 2010 ACM SIGMOD International Conference on Management of Data,June 6-10,2010,Indianapolis,USA. New York:ACM Press, 2010: 459-470. |
ZHAO C , ZOU L , LI F F . Privacy preserving subgraph matching on large graphs in cloud[C]// The 2016 International Conference on Management of Data,June 26-July 1,2016,San Francisco,USA. New York:ACM Press, 2016: 199-213. | |
[17] | DWORK C . Differential privacy[J]. Encyclopedia of Cryptography and Security, 2006(1): 1-12. |
[18] | QARDAJI W , YANG W N , LI N H . PriView:practical differentially private release of marginal contingency tables[C]// International Conference on Management of Data,June 22-27,2014,Snowbird,USA. New York:ACM Press, 2014: 1435-1446. |
[19] | DAY W Y , LI N H , LYU M . Publishing graph degree distribution with node differential privacy[C]// The 2016 International Conference on Management of Data,June 26-July 1,2016,San Francisco,USA. New York:ACM Press, 2016: 123-138. |
[20] | XU S Z , SU S , XIONG L ,et al. Differentially private frequent subgraph mining[C]// 2016 IEEE 32nd International Conference on Data Engineering,May 16-20,2016,Helsinki,Finland. Piscataway:IEEE Press, 2016: 229-240. |
[21] | ZHANG J , XIAO X K , XIE X . PrivTree:a differentially private algorithm for hierarchical decompositions[C]// The 2016 International Conference on Management of Data,June 26-July 1,2016,San Francisco,USA. New York:ACM Press, 2016: 155-170. |
[22] | KRISHNAN S , WANG J N , FRANKLIN M J ,et al. PrivateClean:data cleaning and differential privacy[C]// The 2016 International Conference on Management of Data,June 26-July 1,2016,San Francisco,USA. New York:ACM Pres, 2016: 937-951. |
[23] | WARNER S L . Randomized response:a survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965,60(309): 63-69. |
[24] | ERLINGSSON ú , PIHUR V , KOROLOVA A . RAPPOR:randomized aggregatable privacy-preserving ordinal response[C]// The 2014 ACM SIGSA Conference on Computer and Communications Security,November 3-7,2014,Hong Kong,China. New York:ACM Press, 2014: 1054-1067. |
[25] | BUN M , NELSON J , STEMMER U . Heavy hitters and the structure of local privacy[C]// The 37th ACM SIGMODSIGACT-SIGAI Symposium on Principles of Database Systems,June 10-15,2018,Houston,USA. New York:ACM Press, 2018: 435-447. |
[26] | WANG T H , BLOCKI J , LI N H . Locally differentially private protocols for frequency estimation[C]// USENIX Security Symposium,August 16-18,2017,Vancouver,Canada. Berkeley:USENIX Association, 2017: 729-745. |
[27] | WANG T H , LI N H , JHA S . Locally differentially private frequent itemset mining[C]// IEEE Symposium on Security and Privacy,May 21-23,2018,San Francisco,USA. Piscataway:IEEE Press, 2018: 127-143. |
[28] | YE Q Q , HU H B , MENG X F ,et al. PrivKV:key-value data collection with local differential privacy[C]// IEEE Symposium on Security and Privacy,May 20-22,2019,San Francisco,USA. Piscataway:IEEE Press, 2019: 317-331. |
[29] | QIN Z , YU T , YANG Y ,et al. Generating synthetic decentralized social graphs with local differential privacy[C]// 2018 IEEE 4th International Conference on Computer and Communications Security,June 22-24,2018,Haikou,China. New York:ACM Press, 2017: 425-438. |
[30] | SUN H , XIAO X , KHALIL I ,et al. Analyzing subgraph statistics from extended local views with decentralized differential privacy[C]// 2019 IEEE 5th International Conference on Computer and Communications Security,November 11,2019,London,UK. New York:ACM Press, 2019: 703-717. |
[31] | ZHANG Z K , WANG T H , LI N H ,et al. CALM:consistent adaptive local marginal for marginal release under local differential privacy[C]// 2018 IEEE 4th International Conference on Computer and Communications Security,June 22-24,2018,Haikou,China. New York:ACM Press, 2018: 212-229. |
[32] | PAILLIER P , . Public-key cryptosystems based on composite degree residuosity classes[C]// International Conference on the Theory and Application of Cryptographic Techniques,May 2-6,1999,Prague,Czech Republic.[S.l.:s.n. ], 1999: 223-238. |
[33] | STEHLé D , STEINFELD R , . Faster fully homomorphic encryption[C]// International Conference on the Theory and Application of Cryptology and Information Security,December 5-9,2010,Singapore. Heidelberg:Springer, 2010: 377-394. |
[34] | DOMINGO-FERRER J , . A provably secure additive and multiplicative privacy homomorphism[C]// The 5th International Conference on Information Security,September 30-October 2,2002,S?o Paulo,Brazil. Heidelberg:Springer, 2002: 471-483. |
[35] | PLANTARD T , SUSILO W , ZHANG Z F . Fully homomorphic encryption using ideal lattices[C]// International Conference on Theory of Computing,May 31-June 2,2009,Bethesda,USA. Heidelberg:Springer, 2009: 169-178. |
[36] | HU H , XU J , XU X ,et al. Private search on key-value stores with hierarchical indexes[C]// 2014 IEEE 30th International Conference on Data Engineering,March 31-April 4,2014,Chicago,USA. Piscataway:IEEE Press, 2014: 628-639. |
[37] | HU H B , XU J L , REN C S ,et al. Processing private queries over untrusted data cloud through privacy homomorphism[C]// 2011 IEEE 27th International Conference on Data Engineering,April 11-16,2011,Hannover,Germany. Piscataway:IEEE Press, 2011: 639-644. |
[38] | DU W L , ATALLAH M J . Secure multi-party computation problems and their applications:a review and open problems[C]// The New Security Paradigms Workshop,September 10-13,New Mexico,USA. New York:ACM Press, 2001: 13-22. |
[39] | VAIDYA J , CLIFTON C . Privacy preserving association rule mining in vertically partitioned data[C]// ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,July 23-26,2002,Edmonton,Canada. New York:ACM Press, 2002: 639-644. |
[40] | SHEIKH R , MISHRA D K , KUMAR B . Secure multiparty computation:from millionaires problem to anonymizer[J]. Information Security Journal:A Global Perspective, 2009,20(1): 25-33. |
[41] | 孟小峰, 朱敏杰, 刘俊旭 . 大规模用户隐私风险量化研究[J]. 信息安全研究, 2019(9): 778-788. |
MENG X F , ZHU M J , LIU J X . Quatitative research on privacy risk of large-scale mobile user[J]. Journal of Information Security Research, 2019(9): 778-788. | |
[42] | 孟小峰, 朱敏杰, 刘立新 ,等. 数据垄断与其治理模式研究[J]. 信息安全研究, 2019(9): 789-797. |
MENG X F , ZHU M J , LIU L X ,et al. Research on data monopoly and its governance modes[J]. Journal of Information Security Research, 2019(9): 789-797. | |
[43] | GUPTA M , . How do we make AI fair? (Keynote)[C]// International Conference on Systems and Machine Learning,December 15,2019,Boca Raton,USA.[S.l.:s.n]. 2019. |
[44] | ZHANG X Y , WANG N F , JI S L ,et al. Interpretable deep learning under fire[C]// USENIX Security Symposium 2020,August 12-14,2020,Boston,USA.[S.l.:s.n]. 2020,accepted. |
[1] | 钱海红, 王茂异, 熊贇. 高等教育数字化转型的现状与发展研究[J]. 大数据, 2023, 9(3): 56-70. |
[2] | 王皓, 潘昱杉, 潘毅. 生成式人工智能大模型赋能的元宇宙生命体:前瞻和挑战[J]. 大数据, 2023, 9(3): 85-96. |
[3] | 李婧文, 李雅文. 算法应用风险与治理研究[J]. 大数据, 2023, 9(3): 140-149. |
[4] | 梅宏, 杜小勇, 金海, 程学旗, 柴云鹏, 石宣化, 靳小龙, 王亚沙, 刘驰. 大数据技术前瞻[J]. 大数据, 2023, 9(1): 1-20. |
[5] | 沈阳, 余梦珑. 元宇宙与大数据:时空智能中的数据洞察与价值连接[J]. 大数据, 2023, 9(1): 103-110. |
[6] | 陈静. 人文大数据及其在数字人文领域中的应用[J]. 大数据, 2022, 8(6): 3-14. |
[7] | 罗煜楚, 吴昊, 郭宇涵, 谭绍聪, 刘灿, 蒋瑞珂, 袁晓如. 数字人文中的可视化[J]. 大数据, 2022, 8(6): 74-93. |
[8] | 郑童哲恒, 李斌, 冯敏萱, 常博林, 王东波. 历史典籍的结构化探索——《史记·列传》数字人文知识库的构建与可视化研究[J]. 大数据, 2022, 8(6): 40-55. |
[9] | 李汶龙, 袁媛, 安筱鹏. 刍议大数据治理的三大基础思维[J]. 大数据, 2022, 8(4): 34-45. |
[10] | 汤奇峰, 邵志清, 叶雅珍. 数据交易中的权利确认和授予体系[J]. 大数据, 2022, 8(3): 40-53. |
[11] | 王陈慧子, 蔡玮. 元宇宙数字经济:现状、特征与发展建议[J]. 大数据, 2022, 8(3): 140-150. |
[12] | 杨玫, 李玮, 乔思渊, 刘巍. 中国大数据产业产值测算方法研究[J]. 大数据, 2022, 8(3): 151-160. |
[13] | 李德仁, 张过, 蒋永华, 沈欣, 刘伟玲. 论大数据视角下的地球空间信息学的机遇与挑战[J]. 大数据, 2022, 8(2): 3-14. |
[14] | 仇晓兰, 胡玉新, 上官松涛, 付琨. 遥感卫星大数据高精度一体化处理技术[J]. 大数据, 2022, 8(2): 15-27. |
[15] | 刘伟权, 王程, 臧彧, 胡倩, 于尚书, 赖柏锜. 基于遥感大数据的信息提取技术综述[J]. 大数据, 2022, 8(2): 28-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|