大数据 ›› 2020, Vol. 6 ›› Issue (4): 40-55.doi: 10.11959/j.issn.2096-0271.2020032

• 专题:大数据异构并行系统 • 上一篇    下一篇

面向异构众核超级计算机的大规模稀疏计算性能优化研究

胡正丁,薛巍   

  1. 清华大学计算机科学与技术系,北京 100084
  • 出版日期:2020-07-15 发布日期:2020-07-18
  • 作者简介:胡正丁(1997- ),男,清华大学计算机科学与技术系硕士生,主要研究方向为高性能计算|薛巍(1974- ),男,博士,清华大学计算机科学与技术系副教授,高性能计算研究所所长,中国计算机学会高级会员,主要研究方向为大规模科学计算、量化不确定分析
  • 基金资助:
    国家电网公司科技项目(XT71-19-022)

Research on performance optimization for large-scale sparse computation over many-core heterogenous supercomputer

Zhengding HU,Wei XUE   

  1. Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China
  • Online:2020-07-15 Published:2020-07-18
  • Supported by:
    Science and Technology Project of State Grid Corporation of China(XT71-19-022)

摘要:

随着超级计算机技术的发展,大数据应用中大规模稀疏问题的求解成为可能,而稀疏问题的不规则计算和访存特性又给应用实现和性能优化带来了挑战。异构众核是超级计算机系统中的常见架构,其设计向应用开发者提出了高要求,如何发挥其强大的计算能力成为一个难题。分析了稀疏计算的性能优化挑战,介绍了基于典型异构众核计算机系统的3种大规模稀疏处理类应用设计和性能优化案例,以期为在新一代异构众核系统上开展大规模稀疏计算问题求解提供借鉴。

关键词: 大数据应用, 稀疏问题, 高性能计算, 性能优化

Abstract:

With development of supercomputer technique,it is possible to solve extra-scale sparse problems in big data applications.However,irregular feature in computation and memory access of sparse problems brings challenges to implementation and optimization of applications.Many-core heterogenous architecture is popular in supercomputer design,which advances a higher requirement for application developers.How to utilize its extraordinary computing ability becomes a very difficult problem.Challenges in optimizing sparse computing problems were analyzed,and three cases of implementation and optimization based on typical many-core heterogenous computer system were introduced,which of all achieve very high performance.Experiences in those successful cases were summed up,to better solve extra-scale sparse computing problems on many-core heterogenous system of new generation.

Key words: big data application, sparse problem, high performance computation, performance optimization

中图分类号: 

No Suggested Reading articles found!