[1] |
KIPF T N , WELLING M . Semi-supervised classification with graph convolutional networks[J]. arXiv preprint,2016,arXiv:1609.02907,
|
[2] |
ZHANG M , CHEN Y . Link prediction based on graph neural networks[C]// The 32nd Conference on Neural Information Processing Systems.[S.l.:s.n]. 2018: 5165-5175.
|
[3] |
FAN S H , ZHU J X , HAN X T ,et al. Metapath-guided heterogeneous graph neural network for intent recommendation[C]// The 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM Press, 2019: 2478-2486.
|
[4] |
DONG Y X , CHAWLA N V , SWAMI A . metapath2vec:scalable representation learning for heterogeneous networks[C]// The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2017: 135-144.
|
[5] |
CHEN T Q , GUESTRIN C . XGBoost:a scalable tree boosting system[C]// The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2016: 785-794.
|
[6] |
NG T W H , SORENSEN K L , EBY L T ,et al. Determinants of job mobility:a theoretical integration and extension[J]. Journal of Occupational and Organizational Psychology, 2007,80(3): 363-386.
|
[7] |
SCHEIN E H . Career dynamics:matching individual and organizational needs[M]. Boston: Addison Wesley Publishing CompanyPress, 1978.
|
[8] |
CHIEN C F , CHEN L F . Data mining to improve personnel selection and enhance human capital:a case study in hightechnology industry[J]. Expert Systems with applications, 2008,34(1): 280-290.
|
[9] |
JANTAN H , HAMDAN A R , OTHMAN Z A . Knowledge discovery techniques for talent forecasting in human resource application[J]. World Academy of Science,Engineering and Technology, 2009,50: 775-783.
|
[10] |
LI L Y , JING H , TONG H H ,et al. Nemo:next career move prediction with contextual embedding[C]// The 26th International Conference on World Wide Web Companion.[S.l.:s.n]. 2017: 505-513.
|
[11] |
LIU Y , ZHANG L M , NIE L Q ,et al. Fortune teller:predicting your career path[C]// The 30th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2016: 201-207.
|
[12] |
胥皇 . 基于属性图挖掘的职业流动行为研究[D]. 西安:西北工业大学, 2018.
|
|
XU H . Understanding career mobility behavior based on attributed graph mining[D]. Xi’an:Northwestern Polytechnical University, 2018.
|
[13] |
杜鹏程, 吴婷, 王成城 . 科技人力资源研究领域的知识图谱分析[J]. 中国科技论坛, 2013,1(8): 83-89.
|
|
DU P C , WU T , WANG C C . The knowledge mapping analysis of the research areas of human resources for science and technology[J]. Forum on Science and Technology in China, 2013,1(8): 83-89.
|
[14] |
PEROZZI B , AL-RFOU R , SKIENA S . DeepWalk:online learning of social representations[C]// The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2014: 701-710.
|
[15] |
GROVER A , LESKOVEC J . node2vec:scalable feature learning for networks[C]// The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2016: 855-864.
|
[16] |
TANG J , QU M , WANG M ,et al. LINE:large-scale information network embedding[C]// The 24th International Conference on World Wide Web.[S.l.:s.n]. 2015: 1067-1077.
|
[17] |
MIKOLOV T , SUTSKEVER I , CHEN K ,et al. Distributed representations of words and phrases and their compositionality[C]// The 26th Conference on Neural Information Processing Systems.[S.l.:s.n]. 2013: 3111-3119.
|
[18] |
SUN Y Z , YU Y T , HAN J W . Rankingbased clustering of heterogeneous information networks with star network schema[C]// The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2009: 797-806.
|
[19] |
LU Y F , SHI C , HU L M ,et al. Relation structure-aware heterogeneous information network embedding[C]// The 33th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2019: 4456-4463.
|
[20] |
SUN Y Z , HAN J W , YAN X F ,et al. PathSim:meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011,4(11): 992-1003.
|
[21] |
TANG J , ZHANG J , YAO L M ,et al. ArnetMiner:extraction and mining of academic social networks[C]// The 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2008: 990-998.
|