大数据 ›› 2022, Vol. 8 ›› Issue (4): 145-164.doi: 10.11959/j.issn.2096-0271.2022036
夏正勋, 唐剑飞, 罗圣美, 张燕
出版日期:
2022-07-15
发布日期:
2022-07-01
作者简介:
夏正勋(1979‒ ),男,星环信息科技(上海)股份有限公司高级研究员,主要研究方向为大数据、数据库、人工智能、流媒体处理技术等Zhengxun XIA, Jianfei TANG, Shengmei LUO, Yan ZHANG
Online:
2022-07-15
Published:
2022-07-01
摘要:
人工智能进一步提升了信息系统的自动化程度,但在其规模应用过程中出现了一些新问题,如数据安全、隐私保护、公平伦理等。为了解决这些问题,推动AI由可用系统向可信系统转变,提出了可信AI治理框架——T-DACM,从数据、算法、计算、管理4个层级入手提升AI的可信性,设计了不同组件针对性地解决数据安全、模型安全、隐私保护、模型黑盒、公平无偏、追溯定责等具体问题。T-DACM实践案例为业界提供了一个可信AI治理示范,为后续基于可信AI治理框架的产品研发提供了一定的参考。
中图分类号:
夏正勋, 唐剑飞, 罗圣美, 张燕. 可信AI治理框架探索与实践[J]. 大数据, 2022, 8(4): 145-164.
Zhengxun XIA, Jianfei TANG, Shengmei LUO, Yan ZHANG. Exploration and practice of trusted AI governance framework[J]. Big Data Research, 2022, 8(4): 145-164.
[1] | 杨庆峰 . 从人工智能难题反思AI伦理原则[J]. 哲学分析, 2020,11(2): 137-150,199. |
YANG Q F . An analysis of ethical principle of AI:based on the difficult problem of AI[J]. Philosophical Analysis, 2020,11(2): 137-150,199. | |
[2] | IDC. IDC forecasts companies to spend almost $342 billion on AI solutions in 2021[Z]. 2021. |
[3] | Z HANG M G , ZENG K H , WANG J W . A survey on face anti-spoofing algorithms[J]. Journal of Information Hiding and Privacy Protection, 2020,2(1): 21-34. |
[4] | LU J J , SIBAI H , FABRY E . Adversarial examples that fool detectors[J]. arXiv preprint,2017,arXiv:1712.02494. |
[5] | GU T Y , DOLAN-GAVITT B , GARG S . BadNets:identifying vulnerabilities in the machine learning model supply chain[J]. arXiv preprint,2017,arXiv:1708.06733. |
[6] | 邢根上, 鲁芳, 罗定提 . 政府监管下的电商大数据“杀熟”演化仿真分析[J]. 湖南工业大学学报, 2021,35(2): 65-72. |
XING G S , LU F , LUO D T . An evolution simulation analysis of E-commerce big data-based price discrimination under government supervision[J]. Journal of Hunan University of Technology, 2021,35(2): 65-72. | |
[7] | 朱悦蘅, 王凯军 . 数字劳工过度劳动的逻辑生成与治理机制[J]. 社会科学, 2021(7): 59-69. |
ZHU Y H , WANG K J . Logical generation and governance mechanism of digital labor overwork[J]. Journal of Social Sciences, 2021(7): 59-69. | |
[8] | 刘慈欣 . 三体[J]. 意林, 2019(12): 67. |
LIU C X . The three body problem[J]. Yilin, 2019(12): 67. | |
[9] | GOODFELLOW I J , SHLENS J , SZEGEDY C . Explaining and harnessing adversarial examples[J]. arXiv preprint,2014,arXiv:1412.6572. |
[10] | RIBEIRO M T , SINGH S , GUESTRIN C . “Why should I trust you? ”:explaining the predictions of any classifier[C]// Proceedings of 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Demonstrations. Stroudsburg:Association for Computational Linguistics, 2016. |
[11] | GIDARIS S , KOMODAKIS N . Dynamic few-shot visual learning without forgetting[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018. |
[12] | NGUYEN H H , FANG F M , YAMAGISHI J ,et al. Multi-task learning for detecting and segmenting manipulated facial images and videos[J]. arXiv preprint,2019,arXiv:1906.06876. |
[13] | IOSIFIDIS V , FETAHU B , NTOUTSI E . FAE:a fairness-aware ensemble framework[C]// Proceedings of 2019 IEEE International Conference on Big Data. Piscataway:IEEE Press, 2019: 1375-1380. |
[14] | SAUER A , GEIGER A . Counterfactual generative networks[J]. arXiv preprint,2021,arXiv:2101.06046. |
[15] | 梁春丽 . 欧盟AI道德准则草案出炉[J]. 金融科技时代, 2019,27(2): 91. |
LIANG C L . Draft EU AI ethics code released[J]. Financial Technology Time, 2019,27(2): 91. | |
[16] | SHIN J , BULUT O , GIERL M J . Development practices of trusted AI systems among canadian data scientists[J]. International Review of Information Ethics, 2020,28: 1-10. |
[17] | ICO. Explaining decisions made with AI[Z]. 2021. |
[18] | WINTER P M , EDER S , WEISSENB?CK J , ,et al. Trusted artificial intelligence:towards certification of machine learning applications[J]. arXiv preprint,2021,arXiv:2103.16910. |
[19] | MENG D Y , CHEN H . MagNet:a twopronged defense against adversarial examples[C]// Proceedings of 2017 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2017. |
[20] | KUANG K , XIONG R X , CUI P ,et al. Stable prediction across unknown environments[J]. arXiv preprint,2018,arXiv:1806.06270. |
[21] | ZHANG Q S , YANG Y , MA H T ,et al. Interpreting CNNs via decision trees[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2019: 6254-6263. |
[22] | FENG R , YANG Y , LYU Y H ,et al. Learning fair representations via an adversarial framework[J]. arXiv preprint,2019,arXiv:1904.13341. |
[23] | ZHAO Y Y , ZHONG Z , YANG F X ,et al. Learning to generalize unseen domains via memory-based multi-source metalearning for person re-identification[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2021: 6277-6286. |
[24] | 国家新一代人工智能治理专业委员会. 发展负责任的人工智能:新一代人工智能治理原则发布[J]. 科技与金融, 2019(7): 2-3. |
The National New Generation Artificial Intelligence Governance Specialist Committee. Developing responsible AI:a new generation of AI governance principles released[J]. Sci-Tech Finance Monthly, 2019(7): 2-3. | |
[25] | 景慧昀, 魏薇, 周川 ,等. 人工智能安全框架[J]. 计算机科学, 2021,48(7): 1-8. |
JING H Y , WEI W , ZHOU C ,et al. Artificial intelligence security framework[J]. Computer Science, 2021,48(7): 1-8. | |
[26] | JIANG H , NACHUM O . Identifying and correcting label bias in machine learning[J]. arXiv preprint,2019,arXiv:1901.04966. |
[27] | HUANG L , VISHNOI N . Stable and fair classification[C]// Proceedings of the 36th International Conference on Machine Learning.[S.l.:s.n.], 2019: 2879-2890. |
[28] | YANG Q , LIU Y , CHEN T J ,et al. Federated machine learning:concept and applications[J]. arXiv preprint,2019:arXiv:1902.04885. |
[29] | HARDT M , PRICE E , SREBRO N . Equality of opportunity in supervised learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. New York:ACM Press, 2016: 3323-3331. |
[30] | BERK R , HEIDARI H , JABBARI S ,et al. Fairness in criminal justice risk assessments:the state of the art[J]. arXiv preprint,2017,arXiv:1703.09207. |
[31] | SHEN S , TOPLE S , SAXENA P . AUROR:defending against poisoning attacks in collaborative deep learning systems[C]// Proceedings of the 32nd Annual Conference on Computer Security Applications. New York:ACM Press, 2016: 508-519. |
[32] | 李立明, 詹思延, 叶冬青 ,等. 流行病学[M]. 北京: 人民卫生出版社, 2020. |
LI L M , ZHAN S Y , YE D Q ,et al. Epidemiology[M]. Beijing: People’s Medical Publishing House, 2020. | |
[33] | AFCHAR D , NOZICK V , YAMAGISHI J ,et al. MesoNet:a compact facial video forgery detection network[C]// Proceedings of 2018 IEEE International Workshop on Information Forensics and Security. Piscataway:IEEE Press, 2018: 1-7. |
[34] | JOURABLOO A , LIU Y J , LIU X M . Face De-Spoofing:anti-spoofing via noise modeling[C]// Proceedings of the European Conference on Computer Vision,[S.l.:s.n.], 2018: 290-306. |
[35] | KAMIRAN F , CALDERS T . Data preprocessing techniques for classification without discrimination[J]. Knowledge and Information Systems, 2012,33(1): 1-33. |
[36] | ZHANG Z , NEILL D B . Identifying significant predictive bias in classifiers[J]. arXiv preprint,2016,arXiv:1611.08292. |
[37] | CALDERS T , VERWER S . Three naive Bayes approaches for discrimination-free classification[J]. Data Mining and Knowledge Discovery, 2010,21(2): 277-292. |
[38] | ROSENBAUM P R , RUBIN D B . The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983,70(1): 41-55. |
[39] | HULLSIEK K H , LOUIS T A . Propensity score modeling strategies for the causal analysis of observational data[J]. Biostatistics, 2002,3(2): 179-193. |
[40] | CHIPMAN H A , GEORGE E I , MCCULLOCH R E . BART:Bayesian additive regression trees[J]. The Annals of Applied Statistics, 2010,4(1): 266-298. |
[41] | YAO L Y , LI S , LI Y L ,et al. ACE:adaptively similarity-preserved representation learning for individual treatment effect estimation[C]// Proceedings of 2019 IEEE International Conference on Data Mining. Piscataway:IEEE Press, 2019: 1432-1437. |
[42] | KUANG K , CUI P , LI B ,et al. Treatment effect estimation with data-driven variable decomposition[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence.[S.l.:s.n.], 2017: 140-146. |
[43] | BISHOP J M . Artificial intelligence is stupid and causal reasoning won’t fix it[J]. arXiv preprint,2020,arXiv:2008.07371. |
[44] | GEIRHOS R , JACOBSEN J H , MICHAELIS C ,et al. Shortcut Learning in deep neural networks[J]. Nature Machine Intelligence, 2020,2(11): 665-673. |
[45] | MOOSAVI-DEZFOOLI S M , FAWZI A , FAWZI O ,et al. Universal adversarial perturbations[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 86-94. |
[46] | HOSPEDALES T M , ANTONIOU A , MICAELLI P ,et al. Meta-learning in neural networks:a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021:1. |
[47] | ZHANG Y , YANG Q . A survey on multitask learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021:1. |
[48] | HE X , ZHAO K Y , CHU X W . AutoML:a survey of the state-of-the-art[J]. Knowledge-Based Systems, 2021,212: 106622. |
[49] | CATON S , HAAS C . Fairness in machine learning:a survey[J]. arXiv preprint,2020,arXiv:2010.04053. |
[50] | TANG DIANE , AGARWAL A , O’BRIEN D ,et al. Overlapping experiment infrastructure:more,better,faster experimentation[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2010. |
[51] | YAO L Y , CHU Z X , LI S ,et al. A survey on causal inference[J]. ACM Transactions on Knowledge Discovery from Data, 2021,15(5): 1-46. |
[52] | VERMA T , PEARL J . Equivalence and synthesis of causal models[C]// Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence.[S.l.:s.n.], 1990: 255-270. |
[53] | SPIRTES P , GLYMOUR C , SCHEINES R . Causation,prediction,and search[M].[S.l.]: The MIT Press, 2001. |
[54] | HOYER P O , JANZING D , MOOIJ J ,et al. Nonlinear causal discovery with additive noise models[C]// Proceedings of the 21st International Conference on Neural Information Processing Systems.Red Hook:Curran Associates Inc. , 2008: 689-696. |
[55] | SHIMIZU S , HOYER P O , HYV?RINEN A , ,et al. A linear non-gaussian acyclic model for causal discovery[J]. The Journal of Machine Learning Research, 2006,7: 2003-2030. |
[56] | CORNFIELD J , HAENSZEL W , HAMMOND E C ,et al. Smoking and lung cancer:recent evidence and a discussion of some questions[J]. International Journal of Epidemiology, 2009,38(5): 1175-1191. |
[57] | ANGRIST J D , IMBENS G W , RUBIN D B . Identification of causal effects using instrumental variables[J]. Journal of the American Statistical Association, 1996,91(434): 444-455. |
[58] | MIAO W , GENG Z , TCHETGEN E J . Identifying causal effects with proxy variables of an unmeasured confounder[J]. Biometrika, 2018,105(4): 987-993. |
[59] | TSAMARDINOS I , ALIFERIS C F . Towards principled feature selection:relevancy,filters and wrappers[C]// Proceedings of International Workshop on Artificial Intelligence and Statistics.[S.l.:s.n.], 2003: 300-307. |
[60] | TSAMARDINOS I , ALIFERIS C F , STATNIKOV A . Time and sample efficient discovery of Markov blankets and direct causal relations[C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM Press, 2003: 673-678. |
[61] | TSAMARDINOS I , BROWN L E , ALIFERIS C F . The max-min hillclimbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006,65(1): 31-78. |
[62] | KAMISHIMA T , AKAHO S , ASOH H ,et al. Fairness-aware classifier with prejudice remover regularizer[C]// Machine Learning and Knowledge Discovery in Databases, 2012: 35-50. |
[63] | GOODFELLOW I , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial networks[J]. Communications of the ACM, 2020,63(11): 139-144. |
[64] | ADEL T , VALERA I , GHAHRAMANI Z ,et al. One-Network adversarial fairness[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33: 2412-2420. |
[65] | PLEISS G , RAGHAVAN M , WU F ,et al. On fairness and calibration[J]. arXiv preprint,2017,arXiv:1709.02012. |
[66] | ZHU L G , LIU Z J , HAN S . Deep leakage from gradients[J]. arXiv preprint,2019,arXiv:1906.08935. |
[67] | TRAMèR F , ZHANG F , JUELS A ,et al. Stealing machine learning models via prediction APIs[J]. arXiv preprint,2016:arXiv:1609.02943. |
[68] | GENTRY C , . Fully homomorphic encryption using ideal lattices[C]// Proceedings of the 41st annual ACM symposium on Symposium on theory of computing. New York:ACM Press, 2009: 169-178. |
[69] | DWORK C , MCSHERRY F , NISSIM K ,et al. Calibrating noise to sensitivity in private data analysis[C]// Theory of Cryptography. Berlin:Springer, 2006: 265-284. |
[70] | SHAMIR A . How to share a secret[J]. Communications of the ACM, 1979,22(11): 612-613. |
[71] | GOLDWASSER S , MICALI S , RACKOFF C . The knowledge complexity of interactive proof systems[J]. SIAM Journal on Computing, 1989,18(1): 186-208. |
[72] | RABIN M . How to exchange secrets with oblivious transfer[J]. IACR Cryptol EPrint Arch, 2005:187. |
[73] | YAO A C C , . How to generate and exchange secrets[C]// Proceedings of 27th Annual Symposium on Foundations of Computer Science. Piscataway:IEEE Press, 1986: 162-167. |
[74] | HENDRICKS L A , AKATA Z , ROHRBACH M ,et al. Generating visual explanations[C]// Computer Vision –ECCV 2016.[S.l.:s.n.], 2016. |
[75] | SPEICHER T , HEIDARI H , GRGICHLACA N ,et al. A unified approach to quantifying algorithmic unfairness:measuring individual & Group unfairness via inequality indices[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining. New York:ACM Press, 2018: 2239-2248. |
[1] | 李爱黎, 张子帅, 林荫, 王秋菊, 杨建安, 孟炜程, 张岩峰. 基于社交网络大数据的民众情感监测研究[J]. 大数据, 2022, 8(6): 105-126. |
[2] | 夏正勋,杨一帆,罗圣美,赵大超,张燕,唐剑飞. 生成技术在人工智能平台中的应用探索[J]. 大数据, 2020, 6(6): 0-. |
[3] | 夏正勋, 罗圣美, 孙元浩, 唐剑飞, 张燕. 大规模异构数据并行处理系统的设计、实现与实践[J]. 大数据, 2020, 6(4): 18-29. |
[4] | 张永锋, 霍东云, 李振华, 智强, 李燕茜. 学术大数据在企业专家对接中的应用[J]. 大数据, 2019, 5(5): 79-88. |
[5] | 李毓瑞, 陈红梅, 王丽珍, 肖清. 基于密度的停留点识别方法[J]. 大数据, 2018, 4(5): 80-93. |
[6] | 覃雄派, 陈跃国, 杜小勇, 王伟娟. “数据科学概论”课程设计[J]. 大数据, 2017, 3(6): 102-111. |
[7] | 阮彤, 高炬, 冯东雷, 钱夕元, 王婷, 孙程琳. 基于电子病历的临床医疗大数据挖掘流程与方法[J]. 大数据, 2017, 3(5): 83-98. |
[8] | 姚前, 谢华美, 刘松灵, 李香菊, 刘新海, 景志刚. 基于征信数据观中国近10年产业间信贷资源的调整路径[J]. 大数据, 2017, 3(1): 35-43. |
[9] | 王文生, Leifeng. 关于我国农业大数据中心建设的设想[J]. 大数据, 2016, 2(1): 28-34. |
[10] | . 2015中国大数据技术大会在北京隆重开幕[J]. 大数据, 2016, 2(1): 120-120. |
[11] | 海沫, 牛怡晗, 张悦今. 面向大数据的并行聚类算法在股票板块划分中的应用[J]. 大数据, 2015, 1(4): 9-17. |
[12] | 林春雨, 李崇纲, 许方圆, 许会泉, 石磊, 卢祥虎. 基于大数据技术的P2P网贷平台风险预警模型[J]. 大数据, 2015, 1(4): 18-28. |
[13] | 许洪波, 陈波. 面向国防安全的网络大数据分析与应用系统[J]. 大数据, 2015, 1(4): 29-37. |
[14] | 周涛. 基于统计学习的网络异常行为检测技术[J]. 大数据, 2015, 1(4): 38-47. |
[15] | 高辉, 陈钧, 牛海波, 罗威. 面向科技情报的互联网信息源自动发现技术[J]. 大数据, 2015, 1(4): 48-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|