[1] |
肖寒 . J2EE平台下代码自动生成技术研究[J]. 电脑知识与技术, 2009,5(20): 5421-5422,5434.
|
|
XIAO H . Study of code generation technology based on J2EE platform[J]. Computer Knowledge and Technology, 2009,5(20): 5421-5422,5434.
|
[2] |
CHEN T Q , THIERRY M , JIANG Z H ,et al. TVM:an automated end-to-end optimizing compiler for deep learning[C]// The 13th USENIX Symposium on Operating Systems Design and Implementation.[S.l.:s.n]. 2018: 578-594.
|
[3] |
梁青青 . 基于关键超参 数选择的监督式AutoML性能优化[D]. 贵州:贵州大学, 2019.
|
|
LIANG Q Q . Performance optimization of supervised AutoML based on key super parameter selection[D]. Guizhou:Guizhou University, 2019.
|
[4] |
L EMKE C , BUDKA M , GABRYS B . Metalearning:a survey of trends and technologies[J]. Artificial Intelligence Review, 2015,44(1): 117-130.
|
[5] |
陈森朋, 吴佳, 陈修云 . 基于强化学习的超参数优化方法[J]. 小型微型计算机系统, 2020,41(4): 679-684.
|
|
CHEN S P , WU J , CHEN X Y . Hyperparameter optimization method based on reinforcement learning[J]. Journal of Chinese Mini-Micro Computer Systems, 2020,41(4): 679-684.
|
[6] |
李玉娟 . 基于改进粒子群算法的深度学习超参数优化方法[J]. 信息通信, 2020(1): 52-53,55.
|
|
LI Y J . Deep learning hyperparameter optimization method based on improved particle swarm optimization[J]. Information & Communications, 2020(1): 52-53,55.
|
[7] |
朱汇龙, 刘晓燕, 刘瑶 . 基于贝叶斯新型深度学习超参数优化的研究[J]. 数据通信, 2019(2): 35-38,46.
|
|
ZHU H L , LIU X Y , LIU Y . Research on new deep learning super parameter optimization based on Bayes[J]. Shuju Rongkin, 2019(2): 35-38,46.
|
[8] |
孙晓璇, 张磊, 李健 . 目标检测数据集半自动生成技术研究[J]. 计算机系统应用, 2019,28(10): 8-14.
|
|
SUN X X , ZHANG L , LI J . Research on semiautomatic generation technology of object detection datasets[J]. Computer Systems &Applications, 2019,28(10): 8-14.
|
[9] |
杨懿男, 齐林海, 王红 ,等. 基于生成对抗网络的小样本数据生成技术研究[J]. 电力建设, 2019,40(5): 71-77.
|
|
YANG Y N , QI L H , WANG H ,et al. Research on generation technology of small sample data based on generative adversarial network[J]. Electric Power Construction, 2019,40(5): 71-77.
|
[10] |
KURAKIN A , GOODFELLOW I , BENGIO S . Advers arial machine learning at scale[C]// International Conference on Learning Representations.[S.l.:s.n]. 2017.
|
[11] |
SU P H , LIU Y H , SONG X . Research on intrusion detection method based on improved smote and XGBoost[C]// The 8th International Conference on Communication and Network Security.[S.l.:s.n]. 2018: 37-41.
|
[12] |
GOODFELLOW I J , SHLENS J , SZEGEDY C . Explaining and harnessing adversarial examples[J]. arXiv preprint,2015,arXiv:1412.6572,
|
[13] |
CARLINI N , WAGNER D . Towards evaluating the robustness of neural networks[J]. arXiv preprint,2016,arXiv:1608.04644,
|
[14] |
MOOSAVI-DEZFOOLI S M , FAWZI A , FROSSARD P . DeepFool:a simple and accurate method to fool deep neural networks[C]// The IEEE Computer Vision& Pattern Recognition. Piscataway:IEEE Press, 2016: 2574-2582.
|
[15] |
SARKAR S , BANSAL A , MAHBUB U ,et al. UPSET and ANGRI:breaking high performance image classifiers[J]. arXiv preprint,2017,arXiv:1707.01159,
|
[16] |
CISSEM ADIY NEVEROVAN . Houdini:fooling deep structured prediction models[J]. arXiv preprint,2017,arXiv:1707.05373,
|
[17] |
SU J W , VARGAS D V , KOUICHI S . One pixel attack for fooling deep neural networks[J]. arXiv preprint,2017,arXiv:1710.08864,
|