[1] |
XU X . Research prospect:data factor of production[J]. Journal of Internet and Digital Economics, 2021,1(1): 64-71.
|
[2] |
SONG L S , WU H Q , RUAN W Q ,et al. SoK:training machine learning models over multiple sources with privacy preservation[J]. arXiv preprint,2020,arXiv:2012.03386.
|
[3] |
CRAMER R , DAMG?RD I B , NIELSEN J B . Secure multiparty computation and secret sharing[M]. Cambridge: Cambridge University Press, 2015.
|
[4] |
GOLDREICH O , MICALI S , WIGDERSON A . How to play ANY mental game[C]// Proceedings of the 19th Annual ACM Conference on Theory of Computing. New York:ACM Press, 1987: 218-229.
|
[5] |
BEN-OR M , GOLDWASSER S , WIGDERSON A . Completeness theorems for non-cryptographic fault-tolerant distributed computation[C]// Proceedings of the 20th Annual ACM Symposium on Theory of Computing. New York:ACM Press, 1988: 1-10.
|
[6] |
MOHASSEL P , ZHANG Y P . SecureML:a system for scalable privacy-preserving machine learning[C]// Proceedings of 2017 IEEE Symposium on Security and Privacy. Piscataway:IEEE Press, 2017: 19-38.
|
[7] |
MOHASSEL P , RINDAL P . ABY3:a mixed protocol framework for machine learning[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2018: 35-52.
|
[8] |
DALSKOV A P K , ESCUDERO D , KELLER M . Fantastic four:honestmajority four-party secure computation with malicious security[C]// Proceedings of 30th USENIX Security Symposium.[S.l.:s.n.], 2021: 2183-22.
|
[9] |
KOTI N , PANCHOLI M , PATRA A ,et al. SWIFT:super-fast and robust privacy-preserving machine learning[C]// Proceedings of 30th USENIX Security Symposium.[S.l.:s.n.], 2021: 2651-2668.
|
[10] |
PATRA A , SURESH A . BLAZE:blazing fast privacy-preserving machine learning[C]// Proceedings of 2020 Network and Distributed System Security Symposium. Reston:Internet Society, 2020.
|
[11] |
TAN S J , KNOTT B , TIAN Y ,et al. CryptGPU:fast privacy-preserving machine learning on the GPU[C]// Proceedings of 2021 IEEE Symposium on Security and Privacy. Piscataway:IEEE Press, 2021: 1021-1038.
|
[12] |
WAGH S , TOPLE S , BENHAMOUDA F ,et al. Falcon:honest-majority maliciously secure framework for private deep learning[J]. Proceedings on Privacy Enhancing Technologies, 2021,2021(1): 188-208.
|
[13] |
LI T , SAHU A K , TALWALKAR A ,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal Processing Magazine, 2020,37(3): 50-60.
|
[14] |
YANG Q , LIU Y , CHEN T J ,et al. Federated machine learning[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-19.
|
[15] |
王健宗, 孔令炜, 黄章成 ,等. 联邦学习隐私保护研究进展[J]. 大数据, 2021,7(3): 130-149.
|
|
WANG J Z , KONG L W , HUANG Z C ,et al. Research advances on privacy protection of federated learning[J]. Big Data Research, 2021,7(3): 130-149.
|
[16] |
周传鑫, 孙奕, 汪德刚 ,等. 联邦学习研究综述[J]. 网络与信息安全学报, 2021,7(5): 77-92.
|
|
ZHOU C X , SUN Y , WANG D G ,et al. Survey of federated learning research[J]. Chinese Journal of Network and Information Security, 2021,7(5): 77-92.
|
[17] |
ZHU L G , LIU Z J , HAN S . Deep leakage from gradients[J]. Advances in Neural Information Processing Systems, 2019,32.
|
[18] |
JERE M S , FARNAN T , KOUSHANFAR F . A taxonomy of attacks on federated learning[J]. IEEE Security & Privacy, 2021,19(2): 20-28.
|
[19] |
NIU C Y , ZHENG Z Z , WU F ,et al. Online pricing with reserve price constraint for personal data markets[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,34(4): 1928-1943.
|
[20] |
ZHENG Z J , SONG L Y , HAN Z . Bridging the gap between big data and game theory:a general hierarchical pricing framework[C]// Proceedings of 2017 IEEE International Conference on Communications. Piscataway:IEEE Press, 2017: 1-6.
|
[21] |
GENTRY C , . Fully homomorphic encryption using ideal lattices[C]// Proceedings of the 41st Annual ACM Symposium on Theory of Computing. New York:ACM Press, 2009: 169-178.
|