大数据 ›› 2024, Vol. 10 ›› Issue (1): 9-16.doi: 10.11959/j.issn.2096-0271.2024017

• 战略研究 • 上一篇    下一篇

大数据与计算模型

李国杰   

  1. 中国科学院计算技术研究所,北京 100190
  • 出版日期:2024-01-01 发布日期:2024-01-01
  • 作者简介:李国杰(1943- ),男,中国工程院院士,第三世界科学院院士,中国科学院计算技术研究所首席科学家,中国计算机学会名誉理事长。主要从事计算机体系结构、并行算法、人工智能、大数据,计算机网络、信息技术发展战略等方面的研究,发表科学论文150多篇,出版了三本《创新求索录》文集,长期致力于发展曙光高性能计算机产业和CPU等核心技术的自主可控。

Big data and computing models

Guojie LI   

  1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
  • Online:2024-01-01 Published:2024-01-01

摘要:

当前,人工智能持续升温,大语言模型吸引了众多人士的关注,并在全球范围内掀起了一股热潮。人工智能的成功本质上不是大算力“出奇迹”,而是改变了计算模型。首先,肯定了数据对于人工智能的基础性作用,指出合成数据将是未来数据的主要来源。然后,回顾了计算模型的发展历程,重点介绍了神经网络模型与图灵模型的历史性竞争;指出了大模型的重要标志是机器涌现智能,强调大模型的本质是“压缩”;分析了大模型产生“幻觉”的原因。最后,呼吁科技界在智能化科研中要重视大科学模型。

关键词: 人工智能, 大数据, 计算模型, 神经网络模型, 合成数据, 涌现

Abstract:

At present, artificial intelligence continues to heat up.Large language models have attracted much attention and set off a wave of enthusiasm around the world.The success of artificial intelligence is not essentially a "miracle" of large computing power, but a change in computing models.Firstly, this paper affirms the fundamental role of data in AI, and points out that synthetic data will be the main source of data in the future.Then, this paper reviews the development of computing models, highlights the historic competition between neural network models and Turing models.We points out that the important hallmark of large language models is the emergence of intelligence in machines, emphasizes that the essence of large language models is "compression", and analyzes the reasons for the "illusion" of large language models.Finally, we call on the scientific community to attach importance to large scientific models in "AI for research(AI4R)".

Key words: artificial intelligence, big data, computing model, neural network model, synthetic data, emergence

中图分类号: 

No Suggested Reading articles found!