[1] |
PEARL J . The seven tools of causal inference,with reflections on machine learning[J]. Communications of the ACM, 2019,62(3): 54-60.
|
[2] |
RIBEIRO M T , SINGH S , GUESTRIN C . Why should I trust you?:explaining the predictions of any classifier[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016: 1135-1144.
|
[3] |
LOFTUS J R , RUSSELL C , KUSNER M J ,et al. Causal reasoning for algorithmic fairness[EB]. arXiv preprint, 2018,arXiv:1805.05859.
|
[4] |
BAREINBOIM E , PEARL J . Causal inference and the data-fusion problem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(27): 7345-7352.
|
[5] |
LIU C L , HSIEH C D . Exploring phrase-based classification of judicial documents for criminal charges in chinese[C]// International Symposium on Methodologies for Intelligent Systems. Berlin:Springer, 2006: 681-690.
|
[6] |
LIU C L , CHANG C T , HO J H . Case instance generation and refinement for case-based criminal summary judgments in Chinese[J]. Journal of Information Science and Engineering, 2004,20(4): 783-800.
|
[7] |
LUO B , FENG Y , XU J ,et al. Learning to predict charges for criminal cases with legal basis[EB]. arXiv preprint, 2017,arXiv:1707.09168.
|
[8] |
HU Z , LI X , TU C ,et al. Few-shot charge prediction with discriminative legal attributes[C]// Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe:Association for Computational Linguistics, 2018: 487-498.
|
[9] |
ZHONG H X , GUO Z P , TU C C ,et al. Legal judgment prediction via topological learning[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2018: 3540-3549.
|
[10] |
YE H , JIANG X , LUO Z ,et al. Interpretable charge predictions for criminal cases:learning to generate court views from fact descriptions[EB]. arXiv preprint, 2018,arXiv:1802.08504.
|
[11] |
CROCE D , ROSSINI D , BASILI R . Auditing deep learning processes through kernelbased explanatory models[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong:EMNLP-IJCNLP, 2019: 4037-4046.
|
[12] |
SUN Z , FAN C , HAN Q ,et al. Selfexplaining structures improve NLP models[EB]. arXiv preprint, 2020,arXiv:2012.01786.
|
[13] |
HAN X C , WALLACE B C , TSVETKOV Y ,et al. Explaining black box predictions and unveiling data artifacts through influence functions[EB]. arXiv preprint, 2020,arXiv:2005.06676.
|
[14] |
WALLACE E , FENG S , BOYD-GRABER J . Interpreting neural networks with nearest neighbors[EB]. arXiv preprint, 2018,arXiv:1809.028478.
|
[15] |
LEI T , BARZILAY R , JAAKKOLA T ,et al. Rationalizing Neural Predictions[EB]. arXiv preprint, 2016,arXiv:1606.04155.
|
[16] |
NARANG S , RAFFEL C , LEE K ,et al. WT5? ! training text-to-text models to explain their predictions[EB]. arXiv preprint, 2020,arXiv:2004.14546.
|
[17] |
JIANG Y C , BANSAL M . Self-assembling modular networks for interpretable multihop reasoning[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLPIJCNLP). Stroudsburg:Association for Computational Linguistics, 2019: 4474-4484.
|
[18] |
JIANG Y C , JOSHI N , CHEN Y C ,et al. Explore,propose,and assemble:an interpretable model for multi-hop reading comprehension[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2019: 2714-2725.
|
[19] |
ZHONG H X , WANG Y Z , TU C C ,et al. Iteratively questioning and answering for interpretable legal judgment prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020,34(1): 1250-1257.
|
[20] |
LANDEIRO V , CULOTTA A . Robust text classification in the presence of confounding bias[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016,30(1): 186-193.
|
[21] |
PONTI E M , KORHONEN A . Eventrelated features in feedforward neural networks contribute to identifying causal relations in discourse[C]// Proceedings of the 2nd Workshop on Linking Models of Lexical,Sentential and Discourse-level Semantics. Stroudsburg:Association for Computational Linguistics, 2017: 25-30.
|
[22] |
PAUL M J . Feature selection as causal inference:experiments with text classification[C]// Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017). Stroudsburg:Association for Computational Linguistics, 2017: 163-172.
|
[23] |
LIU X , YIN D , FENG Y S ,et al. Everything has a cause:leveraging causal inference in legal text analysis[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg:Association for Computational Linguistics, 2021: 1928-1941.
|
[24] |
PEARL J , MACKENZIE D . The book of why:the new science of cause and effect[M]. London: Penguin, 2018.
|
[25] |
SUN M , CHEN X , ZHANG K ,et al. Thulac:an efficient lexical analyzer for Chinese[J]. Retrieved Jan, 2016,10:2022.
|
[26] |
CAMPOS R , MANGARAVITE V , PASQUALI A ,et al. YAKE! Keyword extraction from single documents using multiple local features[J]. Information Sciences, 2020,509: 257-289.
|
[27] |
OGARRIO J M , SPIRTES P , RAMSEY J . A hybrid causal search algorithm for latent variable models[C]// The Eighth Edition of the International Conference on Probabilistic Graphical Models,Lugano:PGM, 2016,52: 368-379.
|