[1] |
齐治昌, 谭庆平, 宁洪 . 软件工程[M]. 北京: 高等教育出版社, 2001: 304-331.
|
|
QI Z C , TAN Q P , NING H . Software engineering[M]. Beijing: Higher Education PressPress, 2001: 304-331.
|
[2] |
AMODEI D , OLAH C , STEINHARDT J ,et al. Concrete problems in AI safety[J]. Computer Science, 2016,arXiv:1606.06565.
|
[3] |
HENDRYCKS D , GIMPEL K . A baseline for detecting misclassified and outof-distribution examples in neural networks[C]// The 5th International Conference on Learning Representations (ICLR),April 24-26,2017,Toulon,France.[S.l.:s.n]. 2017: 1-21.
|
[4] |
CORBETT-DAVIES S , GOEL S . The measure and mismeasure of fairness:a critical review of fair machine learning[J]. Computer Science, 2018,arXiv:1808.00023.
|
[5] |
MORLEY J , FLORIDI L , KINSEY L ,et al. From what to how:an overview of AI ethics tools,methods and research to translate principles into practices[J]. Computer Science, 2019,arXiv:1905.06876.
|
[6] |
JIANG H , KIM B , GUAN M ,et al. To trust or not to trust a classifier[C]// Advances in Neural Information Processing Systems,December 3,2018,Montreal,Canada.[S.l.:s.n]. 2018: 5541-5552.
|
[7] |
KOHAVI R , . A study of cross-validation and bootstrap for accuracy estimation and model selection[C]// The 14th International Joint Conference on Artificial Intelligence,August 20-25,1995,Montreal,Canada.San Francisco:Morgan Kaufmann Publishers Inc. 1995: 1137-1143.
|
[8] |
RIBEIRO M T , SINGH S , GUESTRIN C . Why should I trust you? explaining the predictions of any classifier[C]// The 22nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD),August 24-27,2016,San Francisco,USA. New York:ACM Press, 2016: 1135-1144.
|
[9] |
GUIDOTTI R , MONREALE A , RUGGIERI S ,et al. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 2019,51(5):93.
|
[10] |
RIBEIRO M T , SINGH S , GUESTRIN C . Anchors:high-precision model-agnostic explanations[C]// The 32nd AAAI Conference on Artificial Intelligence,February 2-7,2018,New Orleans,USA.[S.l.:s.n]. 2018: 1527-1535.
|
[11] |
BAEHRENS D , SCHROETER T , HARMELING S ,et al. How to explain individual classification decisions[J]. Journal of Machine Learning Research, 2010,11(11): 1803-1831.
|
[12] |
KONONENKO I , STRUMBELJ E . An efficient explanation of individual classifications using game theory[J]. Journal of Machine Learning Research, 2010,11(1): 1-18.
|
[13] |
AMERSHI S , CHICKERING M , DRUCKER S ,et al. Modeltracker:redesigning performance analysis tools for machine learning[C]// The 33rd Annual ACM Conference on Human Factors in Computing Systems,April 18-23,2015,Seoul,Korea. New York:ACM Press, 2015: 337-346.
|
[14] |
TOLOMEI G , SILVESTRI F , HAINES A ,et al. Interpretable predictions of treebased ensembles via actionable feature tweaking[C]// The 23rd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD),August 13-17,2017,Halifax,Canada. New York:ACM Press, 2017: 465-474.
|
[15] |
KONONENKO I , . Semi-naive Bayesian classifier[C]// The 6th European Working Session on Learning,March 6-8,1991,Porto,Portugal. London:SpringerVerlag, 1991: 206-219.
|
[16] |
PLATT J . Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[J]. Advances in Large Margin Classifiers, 1999,10(3): 61-74.
|
[17] |
HENDRYCKS D , MAZEIKA M , DIETTERICH T . Deep anomaly detection with outlier exposure[C]// The 7th International Conference on Learning Representations (ICLR),May 6-9,2019,New Orleans,USA.[S.l.:s.n]. 2019: 1-18.
|
[18] |
OVADIA Y , FERTIG E , REN J ,et al. Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift[J]. Computer Science, 2019,arXiv:1906.02530.
|
[19] |
ZHANG P , WANG J L , FARHADI A ,et al. Predicting failures of vision systems[C]// The IEEE Conference on Computer Vision and Pattern Recognition,June 23-28,2014,Columbus,USA. Piscataway:IEEE Press, 2014: 3566-3573.
|
[20] |
BANSAL A , FARHADI A , PARIKH D . Towards transparent systems:semantic characterization of failure modes[C]// The 13th European Conference on Computer Vision,September 6-12,2014,Zurich,Switzerland. Heidelberg:Springer, 2014: 366-381.
|
[21] |
HOU B Y , CHEN Q , CHEN Z Q ,et al. r-HUMO:a risk-aware human-machine cooperation framework for entity resolution with quality guarantees[J]. IEEE Transactions on Knowledge and Data Engineering, 2018: 1-13.
|
[22] |
CHEN Z Q , CHEN Q , HOU B Y ,et al. Improving machine-based entity resolution with limited human effort:a risk perspective[C]// The International Workshop on Real-Time Business Intelligence and Analytics,August 27,2018,Rio de Janeiro,Brazil.[S.l.:s.n. ], 2018: 1-5.
|
[23] |
Chen Z Q , Chen Q , Hou B Y ,et al. Towards interpretable and learnable risk analysis for entity resolution[R]. 2019: 1-32.
|
[24] |
VENTURA F , CERQUITELLI T . What’s in the box? explaining the black-box model through an evaluation of its interpretable features[J].,2019,arXiv:1908.04348. Computer Science, 2019:arXiv:1908.04348.
|
[25] |
ANIS K , ZAKIA H , MOHAMED D ,et al. Detecting depression severity by interpretable representations of motion dynamics[C]// The 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG),May 15-19,2018,Xi’an,China. Piscataway:IEEE Press, 2018: 739-745.
|
[26] |
LICON C , BOSC G , SABRI M ,et al. Chemical features mining provides new descriptive structure-odor relationships[J]. PLoS Computational Biology, 2019,15(4):e1006945.
|
[27] |
MARKOWITZ H M , BLAY K A . 风险?收益分析:理性投资的理论与实践(第一卷)[M]. 唐亮,武微,译.北京: 机械工业出版社, 2016: 100-121
|
|
MARKOWITZ H M , BLAY K A . Riskreturn analysis:the theory and practice of rational investing(Volume 1)[M]. Translated by TANG L,WU W. Beijing: China Machine PressPress, 2016: 100-121.
|
[28] |
LI G L , WANG J N , ZHENG Y D ,et al. Crowdsourced data management:a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2016,28(9): 2296-2319.
|
[29] |
CHEN Z Q , CHEN Q , FAN F F ,et al. Enabling quality control for entity resolution:a human and machine cooperation framework[C]// IEEE 34th International Conference on Data Engineering (ICDE),April 16-19,2018,Paris,France. Piscataway:IEEE Press, 2018: 1156-1167.
|
[30] |
GISSIN D,SHALEV-SHWARTZ S . Discriminative active learning[J]. 2019,arXiv:1907.06347.
|
[31] |
GUO C , PLEISS G , SUN Y ,et al. On calibration of modern neural networks[C]// The 34th International Conference on Machine Learning,August 6-11,2017,Sydney,Australia.[S.l.:s.n]. 2017: 1321-1330.
|