大数据 ›› 2020, Vol. 6 ›› Issue (1): 60-80.doi: 10.11959/j.issn.2096-0271.2020006

• 研究 • 上一篇    下一篇

监督学习中的损失函数及应用研究

邓建国,张素兰(),张继福,荀亚玲,刘爱琴   

  1. 太原科技大学计算机科学与技术学院,山西 太原 030024
  • 出版日期:2020-01-15 发布日期:2020-02-21
  • 作者简介:邓建国(1977- ),男,太原科技大学计算机科学与技术学院硕士生,主要研究方向为数据挖掘与图像理解|张素兰(1971- ),女,博士,太原科技大学计算机科学与技术学院教授,中国计算机学会(CCF)会员,主要研究方向为粒计算、数据挖掘与图像理解|张继福(1963- ),男,太原科技大学计算机科学与技术学院教授、博士生导师,CCF高级会员,主要研究方向为数据挖掘与高性能计算|荀亚玲(1980- ),女,博士,太原科技大学计算机科学与技术学院副教授,主要研究方向为数据挖掘与并行计算|刘爱琴(1975- ),女,太原科技大学计算机科学与技术学院副教授,主要研究方向为数据挖掘、并行与分布式计算
  • 基金资助:
    国家自然科学资金资助项目(61373099);国家自然科学资金资助项目(61602335)

Loss function and application research in supervised learning

Jianguo DENG,Sulan ZHANG(),Jifu ZHANG,Yaling XUN,Aiqin LIU   

  1. School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China
  • Online:2020-01-15 Published:2020-02-21
  • Supported by:
    The National Natural Science Foundation of China(61373099);The National Natural Science Foundation of China(61602335)

摘要:

监督学习中的损失函数常用来评估样本的真实值和模型预测值之间的不一致程度,一般用于模型的参数估计。受应用场景、数据集和待求解问题等因素的制约,现有监督学习算法使用的损失函数的种类和数量较多,而且每个损失函数都有各自的特征,因此从众多损失函数中选择适合求解问题最优模型的损失函数是相当困难的。研究了监督学习算法中常用损失函数的标准形式、基本思想、优缺点、主要应用以及对应的演化形式,探索了它们适用的应用场景和可能的优化策略。本研究不仅有助于提升模型预测的精确度,而且也为构建新的损失函数或改进现有损失函数的应用研究提供了一个新的思路。

关键词: 监督学习, 损失函数, 相似度度量

Abstract:

The loss function in supervised learning is often used to evaluate the degree of inconsistency between the real value of the sample and the predicted value of the model,and is generally used for parameter estimation of the model.Due to the constraints of application scenarios,data sets and problems to be solved,there are many kinds and quantities of loss functions used by existing supervised learning algorithms,and each loss function has its own characteristics.Therefore,it is very difficult to select a loss function suitable for solving the optimal model of the problem from many loss functions.The standard forms,basic ideas,advantages and disadvantages,main applications and corresponding evolution forms of commonly used loss functions in supervised learning algorithms were studied,and their more appropriate application scenarios and possible optimization strategies were summarized.This study not only helps to improve the accuracy of model prediction,it also provides a new idea for the application of new loss functions or to improve the application of existing loss functions.

Key words: supervised learning, loss function, similarity measure

中图分类号: 

No Suggested Reading articles found!