[1] |
HE H B , GARCIA E A . Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009,21(9): 1263-1284.
|
[2] |
HUANG G B , ZHU Q Y , SIEW C K . Extreme learning machine:theory and applications[J]. Neurocomputing, 2006,70(1/2/3): 489-501.
|
[3] |
HSU C F , LIN C M , YEH R G . Supervisory adaptive dynamic RBFbased neural-fuzzy control system design for unknown nonlinear systems[J]. Applied Soft Computing, 2013,13(4): 1620-1626.
|
[4] |
LIU H , CHEN S M . Multi-level fusion of classifiers through fuzzy ensemble learning[C]// Proceedings of 2018 11th International Symposium on Computational Intelligence and Design. Piscataway:IEEE Press, 2018: 19-22.
|
[5] |
GU X W . Multilayer ensemble evolving fuzzy inference system[J]. IEEE Transactions on Fuzzy Systems, 2021,29(8): 2425-2431.
|
[6] |
KORYTKOWSKI M , NOWICKI R , RUTKOWSKI L ,et al. AdaBoost ensemble of DCOG rough-neuro-fuzzy systems[C]// Proceedings of the 3rd International Conference on Computational Collective Intelligence:Technologies and Applications. Heidelberg:Springer, 2011: 62-71.
|
[7] |
LIU H , CHEN S M . Multi-level creation of fuzzy ensembles through diversified settings of parameters[C]// Proceedings of 2019 12th International Symposium on Computational Intelligence and Design. Piscataway:IEEE Press, 2019: 185-188.
|
[8] |
LIAW A , WIENER M . Classification and regression by randomForest[J]. R News, 2002,23(2/3): 18-22.
|
[9] |
LESKI J M . TSK-fuzzy modeling based on ε-insensitive learning[J]. IEEE Transactions on Fuzzy Systems, 2005,13(2): 181-193.
|
[10] |
TAKAGI T , SUGENO M . Fuzzy identification of systems and its applications to modeling and control[J]. Readings in Fuzzy Sets for Intelligent Systems, 1993,15(1): 387-403.
|
[11] |
DENG Z H , JIANG Y Z , CHOI K S ,et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013,24(8): 1200-1212.
|
[12] |
SULAIMAN M A , LABADIN J . Feature selection based on mutual information[C]// Proceedings of 2015 9th International Conference on IT in Asia. Piscataway:IEEE Press, 2015: 1-6.
|
[13] |
ZHENG L , CHAO F , PARTHALáIN N M , ,et al. Feature grouping and selection:a graph-based approach[J]. Information Sciences, 2021,546: 1256-1272.
|
[14] |
周文桦, 刘华文, 李恩慧 . 基于特征选择的局部敏感哈希位选择算法[J]. 大数据, 2021,7(6): 67-77.
|
|
ZHOU W H , LIU H W , LI E H . Algorithm of locality sensitive hashing bit selection based on feature selection[J]. Big Data Research, 2021,7(6): 67-77.
|
[15] |
ZHAO J , LIN C M . Wavelet-TSK-type fuzzy cerebellar model neural network for uncertain nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2019,27(3): 549-558.
|
[16] |
RUBIO-SOLIS A , PANOUTSOS G . Fuzzy uncertainty assessment in RBF neural networks using neutrosophic sets for multiclass classification[C]// Proceedings of 2014 IEEE International Conference on Fuzzy Systems. Piscataway:IEEE Press, 2014: 1591-1598.
|
[17] |
HUANG W , OH S K , PEDRYCZ W . Hybrid fuzzy wavelet neural networks architecture based on polynomial neural networks and fuzzy set/relation inference-based wavelet neurons[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,29(8): 3452-3462.
|
[18] |
ARSLAN H , TOZ M . Hybrid FCMWOA data clustering algorithm[C]// Proceedings of 2018 26th Signal Processing and Communications Applications Conference. Piscataway:IEEE Press, 2018: 1-4.
|
[19] |
CATAL?O J P S , POUSINHO H M I , MENDES V M F . Hybrid wavelet-PSOANFIS approach for short-term wind power forecasting in Portugal[J]. IEEE Transactions on Sustainable Energy, 2011,2(1): 50-59.
|
[20] |
ZHU Y J , WANG Z , GAO D Q . Gravitational fixed radius nearest neighbor for imbalanced problem[J]. Knowledge-Based Systems, 2015,90: 224-238.
|
[21] |
GRAA O , REKIK I . Multi-view learningbased data proliferator for boosting classification using highly imbalanced classes[J]. Journal of Neuroscience Methods, 2019,327:108344.
|