频繁子图挖掘是许多实际应用领域中需要解决的重要问题,由于计算密集性、挖掘的图集及其结果容量大,现有的频繁子图挖掘方案无法满足时间需求,其处理效率是目前面临的主要挑战。原创性地提出了并行加速的频繁子图挖掘工具cmFSM。cmFSM主要在3个层次上进行并行优化:单节点上的细粒度OpenMP并行化、多节点多进程并行化和CPU-MIC协作并行化。在单节点上cmFSM的处理速度比基于CPU的最佳算法快一倍,在多节点方案中cmFSM提供可扩展性。结果表明,即使只使用一些并行计算资源,cmFSM也明显优于现有的最先进的算法。这充分表明提出的工具在生物信息学领域的有效性。