[1] |
王茜 . 英国大数据战略分析[J]. 全球科技经济瞭望, 2013(8): 24-27.
|
|
WANG X . British state strategy of developing big data[J]. Global Science,Technology and Economy Outlook, 2013(8): 24-27.
|
[2] |
王忠 . 美国推动大数据技术发展的战略价值及启示[J]. 中国发展观察, 2012(6): 44-45.
|
|
WANG Z . The strategic value and enlightenment of promoting big data technology development in America[J]. China Development Observation, 2012(6): 44-45.
|
[3] |
BROWN J S , HOLMES J H , SHAH K ,et al. Distributed health data networks:a practical and preferred approach to multiinstitutional evaluations of comparative effectiveness,safety,and quality of care[J]. Med Care, 2010,48(6): 45-51.
|
[4] |
SHERMAN R E , ANDERSON S A , DALPAN G J ,et al. Real-world evidencewhat is it and what can it tell us[J]. New England Journal of Medicine, 2016,375(23):2293.
|
[5] |
董景五 . 疾病和有关健康问题的国际统计分类第十次修订本(ICD-10)[M]. 北京: 人民卫生出版社, 1996.
|
|
DONG J W . The international statistical classification of diseases and related health problems 10th revision[M]. Beijing: People’s Medical Publishing HousePress, 1996.
|
[6] |
BODENREIDER O . The unified medical language system (UMLS):integrating biomedical terminology[J]. Nucleic Acids Research, 2004,32(suppl 1): D267-D270.
|
[7] |
WEINSTEIN J N , COLLISSON E A , MILLS G B ,et al. The cancer genome atlas pan-cancer analysis project[J]. Nature Genetics, 2013,45(10): 1113-1120.
|
[8] |
SAMWALD M , JENTZSCH A , BOUTON C ,et al. Linked open drug data for pharmaceutical research and development[J]. Journal of Cheminformatics, 2011,3(1):19.
|
[9] |
BELLEAU F , NOLIN M A , TOURIGNY N ,et al. Bio2RDF:towards a mashup to build bioinformatics knowledge systems[J]. Journal of Biomedical Informatics, 2008,41(5): 706-716.
|
[10] |
HEARST M A , . Automatic acquisition of hyponyms from large text corpora[C]// The 14th Conference on Computational Linguistics,August 23-28,1992,Nantes,France. New York:ACM Press, 1992: 539-545.
|
[11] |
DALKEY N C , ROURKE D L . Experimental assessment of Delphi procedures with group value judgements:advanced research projects agency[J]. Cluster Analysis, 1971:58.
|
[12] |
CHENG Y , WANG F , ZHANG P ,et al. Risk prediction with electronic health records:a deep learning approach[C]// The 2016 SIAM International Conference on Data Mining,May 5-7,2016,Miami,USA.[S.l.:s.n.], 2016: 432-440.
|
[13] |
SUTHERLAND S M , CHAWLA L S,KANE-GILL S L ,et al. Utilizing electronic health records to predict acute kidney injury risk and outcomes:workgroup statements from the 15th,ADQI consensus conference[J]. Canadian Journal of Kidney Health & Disease, 2016,3(1): 1-14.
|
[14] |
WOLFSON J , BANDYOPADHYAY S , ELIDRISI M ,et al. A naive Bayes machine learning approach to risk prediction using censored,time-to-event data[J]. Statistics in Medicine, 2014,34(21): 2941-2957.
|
[15] |
马宗帅 . 基于深度学习的心脑血管疾病预测方法研究[D]. 西安:西安建筑科技大学, 2015.
|
|
MA Z S . Research on cardiovascular disease prediction based on deep learning technical[D]. Xi’an:Xi’an University of Architecture and Technology, 2015.
|
[16] |
AULI M , GALLEY M , QUIRK C ,et al. Joint language and translation modeling with recurrent neural networks[J]. American Journal of Psychoanalysis, 2013,74(2): 212-213.
|
[17] |
RUFFINI G , IBA?EZ D , CASTELLANO M ,et al. EEG-driven RNN classification for prognosis of neurodegeneration in at-risk patients[C]// International Conference on Artificial Neural Networks,September 6-9,2016,Barcelona,Spain. Berlin:Springer, 2016: 306-313.
|
[18] |
MIOTTO R , LI L , DUDLEY J T . Deep learning to predict patient future diseases from the electronic health records[M]. Berlin: Springer International PublishingPress, 2016.
|
[19] |
LIU L , TANG J , CHENG Y ,et al. Mining diabetes complication and treatment patterns for clinical decision support[C]// The 22nd ACM international conference on Information & Knowledge Management,October 27-November 1,2013,San Francisco,USA. New York:ACM Press, 2013: 279-288.
|
[20] |
HUANG Z , DONG W , BATH P ,et al. On mining latent treatment patterns from electronic medical records[J]. Data Mining& Knowledge Discovery, 2015,29(4): 1-36.
|
[21] |
CHENG Y , WANG F , ZHANG P ,et al. Risk prediction with electronic health records:a deep learning approach[C]// The 2016 SIAM International Conference on Data Mining,May 5-7,2016,Miami,USA.[S.l.:s.n. ], 2016: 432-440.
|
[22] |
SUTHERLAND S M , CHAWLA L S , KANEGILL S L ,et al. Utilizing electronichealth records to predict acute kidney injury risk and outcomes:workgroup statements from the 15th ADQI consensus conference[J]. Canadian Journal of Kidney Health and Disease, 2016,3(1): 1-14.
|
[23] |
WOLFSON J , BANDYOPADHYAY S , ELIDRISI M ,et al. A naive Bayes machine learning approach to risk prediction using censored,time-to-event data[J]. Statistics in Medicine, 2011,34(21): 2941-2957.
|
[24] |
SUTSKEVER I , VINYALS O , LE Q V . Sequence to sequence learning with neural networks[C]// The 27th International Conference on Neural Information Processing Systems,December 8-13,2014,Montreal,Canada. New York:ACM Press, 2014: 3104-3112.
|
[25] |
ZHANG J , MANI I . kNN approach to unbalanced data distributions:a case study involving information extraction[C]// The ICML 2003 Workshop on Learning from Imbalanced Datasets,December 3-8,2003,Piscataway,USA.[S.l.:s.n.], 2003.
|
[26] |
TOMEK I . Two modifications of CNN[J]. IEEE Transactions on Systems Man and Communications, 1976,SMC-6(11): 769-772.
|
[27] |
KUBAT M , MATWIN S . Addressing the course of imbalanced training sets:onesided selection[C]// The 14th International Conference on Machine Learning (ICML 1997),July 8-12,1997,Nashville,USA.[S.l.:s.n.],. 1997: 179-186.
|
[28] |
WILSOND L . Asymptotic properties of nearest neighbor rules using edited data[J]. IEEE Transactions on Systems,Man,and Communications, 2007,SMC-2(3): 408-421.
|
[29] |
LAURIKKALA J , . Improving identification of difficult small classes by balancing class distribution[C]// Conference on Artificial Intelligence in Medicine in Europe,July 1-4,2001,Cascais,Portugal. Berlin:Springer Berlin Heidelberg, 2001: 63-66.
|
[30] |
CHAWLAN V , BOWYER K W , HALL L O ,et al. SMOTE:synthetic minority oversampling technique[J]. Journal of Artificial Intelligence Research, 2002(16): 321-357.
|
[31] |
ROSENBAUM P R , RUBIN D B . The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983,70(1): 41-55.
|
[32] |
SOBEL M E , . Causal inference in the social and behavioral sciences[M]// Handbook of Statistical Modeling for the Social and Behavioral Sciences. New York:Springer US, 1995: 1-38.
|
[33] |
HOLLAND P W . Statistics and causal inference[J]. Journal of the American Statistical Association, 1986,81(396): 945-960.
|