Big Data Research ›› 2024, Vol. 10 ›› Issue (1): 62-85.doi: 10.11959/j.issn.2096-0271.2022088
• STUDY • Previous Articles
Zhitao ZHU1,2, Shijing SI1, Jianzong WANG1, Ning CHENG1, Lingwei KONG1, Zhangcheng HUANG1, Jing XIAO1
Online:
2024-01-01
Published:
2024-01-01
Supported by:
CLC Number:
Zhitao ZHU, Shijing SI, Jianzong WANG, Ning CHENG, Lingwei KONG, Zhangcheng HUANG, Jing XIAO. A survey on the fairness of federated learning[J]. Big Data Research, 2024, 10(1): 62-85.
"
参考文献 | 技术方案 | 公平指标 | 优势 | 局限性 | 帕累托最优 |
Yang et al.[ | 组合多臂老虎机 | 测试准确度 | 为弱势客户端提供参与机会 | 仅考虑参与频率 | |
RBCS-F[ | 上下文组合多臂老虎机 | 选择分布参数 | 实现了长期公平约束 | 牺牲训练效率 | √ |
FMAB[ | 多臂老虎机 | - | 考虑客户端抽样过程的不确定性 | 在探测与通信时产生损耗 | |
FedCS[ | 估计等待时间指导客户选择 | 聚合更新客户端数 | 考虑了设备异质性问题 | 依赖诚实且有评估能力的客户端 | |
TRA[ | 容忍丢包损失 | 测试准确度方差 | 保证了一定丢包比例下的个性化和公平性 | 依赖诚实且有评估能力的客户端 | |
PRLC[ | 本地补偿 | 拉动操作数 | 有更好的扩展性 | 容易遭遇模型发散问题 | √ |
Fed-ZDA[ | 本地补偿 | 测试准确度方差 | 零样本数据增强 | 耗费更多的算力与时间 | |
AFL[ | 最小化最大期望损失 | 验证准确度标准差 | 防止模型对任何特定客户的过度拟合 | 仅适用于小规模客户,缺乏灵活性 | |
FedMGDA+[ | 多目标优化 | 训练损失平均方差 | 不牺牲任何参与者性能 | 难以识别恶意客户端 | √ |
FCFL[ | 多目标优化 | 人口均等、机会均等 | 考虑所有客户端优化目标 | 只关注客户端级别的群体公平性 | √ |
q-FFL[ | 放大高损失客户端的损失 | 测试准确度方差 | 更均匀的精度分布 | 需要多次试验确定最佳权重分配参数且对异构数据效果差 | |
α-FedAvg[ | 提升较低准确度客户端的权重 | Jain’s 指数 | 可通过算法在训练之前确定参数α的取值 | 无法抵御膨胀损失攻击 | |
DRFL[ | 由客户端损失动态调整权重 | 准确度均匀程度 | 更方便地调整公平参数 | 没有解决公平参数对不同数据集的适应问题 | |
PG-FFL[ | 强化学习 | 基尼系数 | 自适应学习聚合权重 | 训练成本较高 | |
TrustFed[ | 维持信誉分数剔除异常设备 | - | 引入区块链抵御对抗性攻击 | 增加传输数据量 | |
FedProx[ | 允许客户端训练个性化模型 | 收敛稳定性 | 有助于减少系统异质性的负面影响 | - | |
Ditto[ | 多任务学习 | 测试准确度标准差 | 插件式设计方便改造现有模型 | 增加计算量 | |
FedFV[ | 使用梯度投影缓和梯度冲突 | 测试准确度方差 | 避免牺牲部分客户端模型准确性 | 过时的梯度估计可能导致模型发散 | √ |
Cali3F[ | 梯度校正技术与更新共享 | NDCG标准差 | 避免本地模型发散,提高推荐性能均匀性 | 在推荐性能上非最优 | |
FD[ | 随机丢弃子模型激活节点 | - | 降低了通信和本地计算成本 | 需要多次试验选取最佳暂退率 | √ |
AFD[ | 维护激活分数图生成子模型 | - | 自动选取激活比例 | - | √ |
FedAMP[ | 自适应消息传递框架 | 测试准确度 | 增量优化 | 效果依赖于深度神经网络提高了计算量 |
"
参考文献 | 关键技术 | 衡量标准 | 分配结果 | 要求诚实客户端 | 抗膨胀攻击 |
[33] | 分级别训练 | 本地数据条件 | 分级模型 | √ | |
[34] | 信誉机制 | 可信度、承诺水平 | 分级模型 | √ | |
[35] | 契约理论 | 本地数据 | 参与机会 | √ | |
[36] | Stacklberg博弈 | CPU功率 | 参与机会 | √ | |
[37] | 拍卖理论 | 多种资源 | 参与机会 | √ | |
[38] | 拍卖理论 | 学习质量 | 参与机会 | √ | |
[39] | 拍卖理论 | 相互评估 | 参与机会 | √ | √ |
[40] | VCG机制 | 计算成本、数据质量 | 金钱激励 | √ | |
[41] | 边际损失 | 特征重要性 | - | √ | |
[42,80] | 边际损失 | 边际损失 | - | √ | |
[43,45-47] | 夏普利值 | 梯度信息 | - | √ | |
[48] | 采样测试方法 | 采样数据大小 | - | √ | √ |
[49] | 动态收益共享 | 期望损失、等待时间 | 金钱激励 | √ | |
[50] | 信誉机制 | 验证数据集上准确度 | - | √ | |
[51] | 信誉机制 | 本地计算时间和数据集大小 | - | √ | |
[52] | 信誉机制 | 验证数据集上准确度 | - | √ |
[1] | 王健宗, 孔令炜, 黄章成 ,等. 联邦学习算法综述[J]. 大数据, 2020,6(6): 64-82. |
WANG J Z , KONG L W , HUANG Z C ,et al. Research review of federated learning algorithms[J]. Big Data Research, 2020,6(6): 64-82. | |
[2] | ZENG R F , ZENG C , WANG X W ,et al. A comprehensive survey of incentive mechanism for federated learning[J]. ArXiv e-Prints, 2021,arXiv:2106.15406. |
[3] | ZHAN Y F , ZHANG J , HONG Z C ,et al. A survey of incentive mechanism design for federated learning[J]. IEEE Transactions on Emerging Topics in Computing, 2022,10(2): 1035-1044. |
[4] | SHI Y , YU H , LEUNG C . A survey of fairness-aware federated learning[J]. CoRR, 2021:abs/2111.01872. |
[5] | CATON S , HAAS C . Fairness in machine learning:a survey[J]. ACM Computing Surveys, 2023,arXiv:2010.04053. |
[6] | MEHRABI N , MORSTATTER F , SAXENA N ,et al. A survey on bias and fairness in machine learning[J]. ACM Computing Surveys, 2022,54(6): 1-35. |
[7] | KONG L W , TAO H T , WANG J Z ,et al. Network coding for federated Learning Systems[M]// Neural Information Processing. Cham: Springer, 2020: 546-557. |
[8] | NISHIO T , YONETANI R . Client selection for federated learning with heterogeneous resources in mobile edge[C]// Proceedings of the ICC 2019 - 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-7. |
[9] | YANG M , WANG X M , ZHU H B ,et al. Federated learning with class imbalance reduction[C]// Proceedings of the 2021 29th European Signal Processing Conference. Piscataway:IEEE Press, 2021: 2174-2178. |
[10] | HUANG T S , LIN W W , WU W T ,et al. An efficiency-boosting client selection scheme for federated learning with fairness guarantee[J]. IEEE Transactions on Parallel and Distributed Systems, 2021,32(7): 1552-1564. |
[11] | SHI C , SHEN C . Federated multi-armed bandits[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence,33rd Conference on Innovative Applications of Artificial Intelligence,The 11th Symposium on Educational Advances in Artificial Intelligence. New York:AAAI Press, 2021: 9603-9611. |
[12] | ZHOU P , FANG P , HUI P . Loss tolerant federated learning[J]. CoRR, 2021:abs/2105.03591. |
[13] | XIA J C , ZENG G X , ZHANG J X ,et al. Rethinking transport layer design for distributed machine learning[C]// Proceedings of the 3rd Asia-Pacific Workshop on Networking. New York:ACM, 2019: 22-28. |
[14] | WANG H Z , QU Z H , GUO S ,et al. Intermittent pulling with local compensation for communication-efficient distributed learning[J]. IEEE Transactions on Emerging Topics in Computing, 2022,10(2): 779-791. |
[15] | HAO W T , EL-KHAMY M , LEE J ,et al. Towards fair federated learning with zero-shot data augmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE Press, 2021: 3305-3314. |
[16] | MOHRI M , SIVEK G , SURESH A T . Agnostic federated learning[C]// Proceedings of the 36th International Conference on Machine Learning.[S.l.:s.n.], 2019: 4615-4625. |
[17] | HU Z , SHALOUDEGI K , ZHANG G ,et al. FedMGDA+:federated learning meets multi-objective optimization[J]. CoRR, 2020:abs/2006.11489. |
[18] | CUI S , PAN W , LIANG J ,et al. Addressing algorithmic disparity and performance inconsistency in federated learning[C]// Proceedings of Advances in Neural Information Processing Systems 34:Annual Conference on Neural Information Processing Systems 2021.[S.l.:s.n.], 2021: 26091-26102. |
[19] | LI T , SANJABI M , BEIRAMI A ,et al. Fair resource allocation in federated learning[EB]. arXiv preprint, 2019,arXiv:1905.10497. |
[20] | 田家会, 吕锡香, 邹仁朋 ,等. 一种联邦学习中的公平资源分配方案[J]. 计算机研究与发展, 2022,59(6): 1240-1254. |
TIAN J H , Lü X X , ZOU R P ,et al. A fair resource allocation scheme in federated learning[J]. Journal of Computer Research and Development, 2022,59(6): 1240-1254. | |
[21] | ZHAO Z Y , JOSHI G . A dynamic reweighting strategy for fair federated learning[C]// Proceedings of the ICASSP 2022 - 2022 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2022: 8772-8776. |
[22] | SUN Y Q , SI S J , WANG J Z ,et al. A fair federated learning framework with reinforcement learning[C]// Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2022: 1-8. |
[23] | LI T , BEIRAMI A , SANJABI M ,et al. Tilted Empirical Risk Minimization[C]// Proceedings of the 9th International Conference on Learning Representations.[S.l.:s.n.], 2021. |
[24] | REHMAN M H U , DIRIR A M , SALAH K ,et al. TrustFed:a framework for fair and trustworthy cross-device federated learning in IIoT[J]. IEEE Transactions on Industrial Informatics, 2021,17(12): 8485-8494. |
[25] | 陈乃月, 金一, 李浥东 ,等. 基于区块链的公平性联邦学习模型[J]. 计算机工程, 2022,48(6): 33-41. |
CHEN N Y , JIN Y , LI Y D ,et al. Federated learning model with fairness based on blockchain[J]. Computer Engineering, 2022,48(6): 33-41. | |
[26] | LI T , SAHU A K , ZAHEER M ,et al. Federated optimization in heterogeneous networks[EB]. arXiv preprint, 2018,arXiv:1812.06127. |
[27] | CALDAS S , KONE\VCNY J , MCMAHAN H B ,et al. Expanding the reach of federated learning by reducing client resource requirements[J]. ArXiv e-Prints, 2018:arXiv:1812.07210. |
[28] | BOUACIDA N , HOU J H , ZANG H ,et al. Adaptive federated dropout:improving communication efficiency and generalization for federated learning[C]// Proceedings of the IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops. Piscataway:IEEE Press, 2021: 1-6. |
[29] | HUANG Y , CHU L , ZHOU Z ,et al. Personalized cross-silo federated learning on non-IID data[C]// Proceedings of 35th AAAI Conference on Artificial Intelligence,AAAI 2021,33rd Conference on Innovative Applications of Artificial Intelligence,IAAI 2021,The 11th Symposium on Educational Advances in Artificial Intelligence. New York:AAAI Press, 2021: 7865-7873. |
[30] | WANG Z , FAN X L , QI J Z ,et al. Federated learning with fair averaging[C]// Proceedings of the Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. California:International Joint Conferences on Artificial Intelligence Organization, 2021: 1615-1623. |
[31] | ZHU Z T , SI S J , WANG J Z ,et al. Cali3F:calibrated fast fair federated recommendation system[C]// Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2022: 1-8. |
[32] | 杨秀清, 彭长根, 刘海 ,等. 基于数据质量评估的公平联邦学习方案[J]. 计算机与数字工程, 2022,50(6): 1278-1285. |
YANG X Q , PENG C G , LIU H ,et al. Fair federated learning based on data quality evaluation[J]. Computer & Digital Engineering, 2022,50(6): 1278-1285. | |
[33] | ZHANG J F , LI C , ROBLES-KELLY A , et al ,et al. Hierarchically fair federated learning[EB]. arXiv preprint, 2020,arXiv:2004.10386. |
[34] | LYU L J , YU J S , NANDAKUMAR K ,et al. Towards fair and privacy-preserving federated deep models[J]. IEEE Transactions on Parallel and Distributed Systems, 2020,31(11): 2524-2541. |
[35] | KANG J W , XIONG Z H , NIYATO D ,et al. Incentive design for efficient federated learning in mobile networks:a contract theory approach[C]// Proceedings of the 2019 IEEE VTS Asia Pacific Wireless Communications Symposium. Piscataway:IEEE Press, 2019: 1-5. |
[36] | SARIKAYA Y , ERCETIN O . Motivating workers in federated learning:a stackelberg game perspective[J]. IEEE Networking Letters, 2020,2(1): 23-27. |
[37] | THI LE T H , TRAN N H , TUN Y K ,et al. An incentive mechanism for federated learning in wireless cellular networks:an auction approach[J]. IEEE Transactions on Wireless Communications, 2021,20(8): 4874-4887. |
[38] | DENG Y H , LYU F , REN J ,et al. FAIR:quality-aware federated learning with precise user incentive and model aggregation[C]// Proceedings of the IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2021: 1-10. |
[39] | ZENG R F , ZHANG S X , WANG J Q ,et al. FMore:an incentive scheme of multi-dimensional auction for federated learning in MEC[C]// Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems. Piscataway:IEEE Press, 2020: 278-288. |
[40] | CONG M S , YU H , WENG X ,et al. A VCG-based fair incentive mechanism for federated learning[EB]. arXiv preprint, 2020,arXiv:2008.06680. |
[41] | WANG G , DANG C X , ZHOU Z Y . Measure contribution of participants in federated learning[C]// Proceedings of the 2019 IEEE International Conference on Big Data. Piscataway:IEEE Press, 2019: 2597-2604. |
[42] | NISHIO T , SHINKUMA R , MANDAYAM N B . Estimation of individual device contributions for incentivizing federated learning[C]// Proceedings of the 2020 IEEE Globecom Workshops. Piscataway:IEEE Press, 2020: 1-6. |
[43] | SONG T S , TONG Y X , WEI S Y . Profit allocation for federated learning[C]// Proceedings of the 2019 IEEE International Conference on Big Data. Piscataway:IEEE Press, 2019: 2577-2586. |
[44] | WEI S Y , TONG Y X , ZHOU Z M ,et al. Efficient and fair data valuation for horizontal federated learning[M]// YANG Q,FAN L,YU H. Federated Learning. Cham: Springer, 2020: 139-152. |
[45] | WANG T H , RAUSCH J , ZHANG C ,et al. A principled approach to data valuation for federated learning[M]// YANG Q,FAN L,YU H. Federated Learning. Cham: Springer, 2020: 153-167. |
[46] | JIA R , DAO D , WANG B ,et al. Towards efficient data valuation based on the Shapley value[C]// Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics,AISTATS.[S.l.:s.n.], 2019: 1167-1176. |
[47] | RADANOVIC G , FALTINGS B , JURCA R . Incentives for effort in crowdsourcing using the peer truth serum[J]. ACM Transactions on Intelligent Systems and Technology, 2016,7(4): 1-28. |
[48] | SHYN S K , KIM D , KIM K ,et al. FedCCEA:a practical approach of client contribution evaluation for federated learning[EB]. arXiv preprint, 2021. |
[49] | YU H , LIU Z L , LIU Y ,et al. A fairness-aware incentive scheme for federated learning[C]// Proceedings of the Proceedings of the AAAI/ACM Conference on AI,Ethics,and Society. New York:ACM, 2020: 393-399. |
[50] | LYU L J , XU X Y , WANG Q ,et al. Collaborative fairness in federated learning[M]// Lecture notes in computer science. Cham: Springer, 2020: 189-204. |
[51] | KANG J W , XIONG Z H , NIYATO D ,et al. Reliable federated learning for mobile networks[J]. IEEE Wireless Communications, 2020,27(2): 72-80. |
[52] | ZHANG J W , WU Y Z , PAN R . Incentive mechanism for horizontal federated learning based on reputation and reverse auction[C]// Proceedings of the Proceedings of the Web Conference 2021. New York:ACM, 2021: 947-956. |
[53] | ZHU Z W , HU X , CAVERLEE J . Fairnessaware tensor-based recommendation[C]// Proceedings of the Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York:ACM, 2018: 1153-1162. |
[54] | DíAZ M , JOHNSON I , LAZAR A ,et al. Addressing age-related bias in sentiment analysis[C]// Proceedings of the Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California:International Joint Conferences on Artificial Intelligence Organization, 2019: 6146-6150. |
[55] | KLARE B F , BURGE M J , KLONTZ J C ,et al. Face recognition performance:role of demographic information[J]. IEEE Transactions on Information Forensics and Security, 2012,7(6): 1789-1801. |
[56] | GU J T , HASSAN H , DEVLIN J ,et al. Universal neural machine translation for extremely low resource languages[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1 (Long Papers). Stroudsburg:Association for Computational Linguistics, 2018: 344-354. |
[57] | KAIROUZ P , MCMAHAN H B , AVENT B ,et al. Advances and open problems in federated learning[J]. Foundations and Trends? in Machine Learning, 2021,14(1/2): 1-210. |
[58] | ECKHOUSE L , LUM K , CONTI-COOK C , ,et al. Layers of bias:a unified approach for understanding problems with risk assessment[J]. Criminal Justice and Behavior, 2019,46(2): 185-209. |
[59] | RICHARDSON R , SCHULTZ J , CRAWFORD K . Dirty data,bad predictions:how civil rights violations impact police data,predictive policing systems,and justice[R]. New York University Law Review Online, 2019. |
[60] | LIAO J C , KAIROUZ P , HUANG C ,et al. Learning generative adversarial representations under fairness and censoring constraints[EB]. arXiv preprint, 2019 |
[61] | BRISIMI T S , CHEN R D , MELA T ,et al. Federated learning of predictive models from federated Electronic Health Records[J]. International Journal of Medical Informatics, 2018,112: 59-67. |
[62] | CHANG K , BALACHANDAR N , LAM C ,et al. Distributed deep learning networks among institutions for medical imaging[J]. Journal of the American Medical Informatics Association, 2018,25(8): 945-954. |
[63] | MARTIN A R , KANAI M , KAMATANI Y ,et al. Current clinical use of polygenic scores will risk exacerbating health disparities[J]. bioRxiv, 2019,doi:10.1101/441261. |
[64] | BUOLAMWINI J , GEBRU T . Gender Shades:intersectional accuracy disparities in commercial gender classification[C]// Proceedings of Conference on Fairness,Accountability and Transparency.[S.l.:s.n.], 2018: 77-91. |
[65] | DU W , XU D P , WU X T ,et al. Fairnessaware agnostic federated learning[M]// DEMENICONI C,DAVIDSON I,eds.Proceedings of the 2021 SIAM international conference on data mining. Philadelphia: Society for Industrial and Applied Mathematics, 2021: 181-189. |
[66] | ZENG Y C , CHEN H X , LEE K ,et al. Improving fairness via federated learning[EB]. arXiv preprint, 2021,arXiv:2110.15545. |
[67] | RODRíGUEZ-GáLVEZ B , GRANQVIST F , VAN DALEN R ,et al. Enforcing fairness in private federated learning via the modified method of differential multipliers[EB]. arXiv preprint, 2021,arXiv:2109.08604. |
[68] | CHU L Y , WANG L J , DONG Y J ,et al. FedFair:training fair models in cross-silo federated learning[EB]. arXiv preprint, 2021,arXiv:2109.05662. |
[69] | EZZELDIN Y H , YAN S , HE C Y ,et al. FairFed:enabling group fairness in federated learning[EB]. arXiv preprint, 2021,arXiv:2110.00857. |
[70] | CUMMINGS R , GUPTA V , KIMPARA D ,et al. On the compatibility of privacy and fairness[C]// Proceedings of the UMAP’19 Adjunct:Adjunct Publication of the 27th Conference on User Modeling,Adaptation and Personalization. New York:ACM, 2019: 309-315. |
[71] | CUMMINGS R , KREHBIEL S , LAI K A ,et al. Differential privacy for growing databases[C]// Proceedings of the Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York:ACM, 2018: 8878-8887. |
[72] | JAGIELSKI M , KEARNS M J , MAO J ,et al. Differentially private fair learning[C]// Proceedings of the 36th International Conference on Machine Learning.[S.l.:s.n.], 2019: 3000-3008. |
[73] | AVENT B , KOROLOVA A , ZEBER D ,et al. BLENDER:enabling local search with a hybrid differential privacy model[EB]. arXiv preprint, 2017,arXiv:1705.00831. |
[74] | WANG J Z , HUANG Z C , KONG L W ,et al. Modeling without sharing privacy:federated neural machine translation[M]// Web Information Systems Engineering -WISE 2021. Cham: Springer, 2021: 216-223. |
[75] | LI T , SAHU A K , TALWALKAR A ,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal Processing Magazine, 2020,37(3): 50-60. |
[76] | XUE A S , ZHU X H , WANG J Z ,et al. Diversified point cloud classification using personalized federated learning[C]// Proceedings of the 2021 International Joint Conference on Neural Networks. Piscataway:IEEE Press, 2021: 1-8. |
[77] | ZENG Q S , DU Y Q , HUANG K B ,et al. Energy-efficient radio resource allocation for federated edge learning[C]// Proceedings of the 2020 IEEE International Conference on Communications Workshops. Piscataway:IEEE Press, 2020: 1-6. |
[78] | LI T , HU S Y , BEIRAMI A ,et al. Ditto:fair and robust federated learning through personalization[EB]. arXiv preprint, 2020,arXiv:2012.04221. |
[79] | 朱智韬, 司世景, 王健宗 ,等. 联邦推荐系统综述[J]. 大数据, 2022,8(4): 105-132. |
ZHU Z T , SI S J , WANG J Z ,et al. Survey on federated recommendation systems[J]. Big Data Research, 2022,8(4): 105-132. | |
[80] | GOLLAPUDI S , KOLLIAS K , PANIGRAHI D ,et al. Profit sharing and efficiency in utility games[C]// Proceedings of 25th Annual European Symposium on Algorithms.[S.l.:s.n.], 2017: 1-14. |
[81] | BOLTON P , DEWATRIPONT M . Contract theory[M]. Cambridge: MIT Press, 2004. |
[82] | CORMODE G , JHA S , KULKARNI T ,et al. Privacy at scale:local differential privacy in practice[C]// Proceedings of the Proceedings of the 2018 International Conference on Management of Data. New York:ACM, 2018: 1655-1658. |
[83] | ZHAO J , ZHU X H , WANG J Z ,et al. Efficient client contribution evaluation for horizontal federated learning[C]// Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2021: 3060-3064. |
[84] | YANG Q , LIU Y , CHEN T J ,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 12. |
[85] | DWORK C , HARDT M , PITASSI T ,et al. Fairness through awareness[C]// Proceedings of the Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. New York:ACM, 2012: 214-226. |
[86] | ZAFAR M B , VALERA I , GOMEZRODRIGUEZ M ,et al. Fairness constraints:mechanisms for fair classification[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.[S.l.:s.n.], 2017: 962-970. |
[87] | MITCHELL S , POTASH E , BAROCAS S ,et al. Prediction-based decisions and fairness:a catalogue of choices,assumptions,and definitions[EB]. arXiv preprint, 2018,arXiv:1811.07867. |
[88] | ROH Y , LEE K , WHANG S E ,et al. FairBatch:batch selection for model fairness[EB]. arXiv preprint, 2020,arXiv:2012.01696. |
[89] | ZHOU Z R , CHU L Y , LIU C X ,et al. Towards fair federated learning[C]// Proceedings of the Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York:ACM, 2021: 4100-4101. |
[90] | BENGIO Y , LOURADOUR J , COLLOBERT R ,et al. Curriculum learning[C]// Proceedings of the Proceedings of the 26th Annual International Conference on Machine Learning. New York:ACM, 2009: 41-48. |
[91] | LIU G Y , MA X Q , YANG Y ,et al. FedEraser:enabling efficient client-level data removal from federated learning models[C]// Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service. Piscataway:IEEE Press, 2021: 1-10. |
[1] | Jian YE, Wen LI. Design and implementation of trusted gateway for privacy-preserving interconnection [J]. Big Data Research, 2023, 9(6): 28-38. |
[2] | Chuanyao ZHANG, Shijing SI, Jianzong WANG, Jing XIAO. Federated meta learning: a review [J]. Big Data Research, 2023, 9(2): 122-146. |
[3] | Yan ZHANG, Yifan YANG, Ren YI, Shengmei LUO, Jianfei TANG, Zhengxun XIA. Exploration and practice of data quality governance in privacy computing scenarios [J]. Big Data Research, 2022, 8(5): 55-73. |
[4] | Hongshu YIN, Xuhua ZHOU, Wenjun ZHOU. Research on privacy preservation of member inference attacks in online inference process for vertical federated learning linear model [J]. Big Data Research, 2022, 8(5): 45-54. |
[5] | Jianhan WU, Shijing SI, Jianzong WANG, Jing XIAO. Threats and defenses of federated learning: a survey [J]. Big Data Research, 2022, 8(5): 12-32. |
[6] | Zhitao ZHU, Shijing SI, Jianzong WANG, Jing XIAO. Survey on federated recommendation systems [J]. Big Data Research, 2022, 8(4): 105-132. |
[7] | Jianzong WANG, Lingwei KONG, Zhangcheng HUANG, Linjie CHEN, Yi LIU, Chunxi LU, Jing XIAO. Research advances on privacy protection of federated learning [J]. Big Data Research, 2021, 7(3): 130-149. |
[8] | Jianzong WANG, Lingwei KONG, Zhangcheng HUANG, Linjie CHEN, Yi LIU, Anxun HE, Jing XIAO. Research review of federated learning algorithms [J]. Big Data Research, 2020, 6(6): 64-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|