Big Data Research ›› 2022, Vol. 8 ›› Issue (2): 89-102.doi: 10.11959/j.issn.2096-0271.2022017
• TOPOC: AEROSPACE BIG DATA • Previous Articles Next Articles
Hequn YANG1,2, Xiaofeng WANG1,3, Yanqing GAO1,3, Yiwen LU1, Bingxin MA1, Xinyao WANG1,3
Online:
2022-03-15
Published:
2022-03-01
Supported by:
CLC Number:
Hequn YANG, Xiaofeng WANG, Yanqing GAO, Yiwen LU, Bingxin MA, Xinyao WANG. Analysis of satellite big data requirements in numerical weather prediction[J]. Big Data Research, 2022, 8(2): 89-102.
"
主要领域/属性 | 项目 | 期望目标 |
临近和短期预报 | 龙卷风 | 提前60 min |
雷暴、对流扰动 | 提前6~12 h | |
火灾、溢油、化学或放射性污染等局地灾害性事故 | 实时发展趋势预测 | |
中期预报 | 7~10天预报 | 准确率达90%以上 |
台风(飓风) | 3天路径预报精度达到75海里,2天强度预报精度达到9海里/h | |
洪水 | 提前4天预报 | |
空气质量 | 可以开展7~10天预报 | |
气候预测 | ENSO(厄尔尼诺和南方涛动)、MJO(热带大气季节内振荡)等 | 可以常规预报15~20个月的厄尔尼诺事件,实现较高精度的季节到次季节尺度延伸期预报 |
水平分辨率 | 全球 | 1~5 km |
区域/城市 | 100 m | |
垂直分辨率 | 上层对流层 | 500 m |
边界层 | 30~50 m | |
诊断变量/要素 | 风压、温湿度等 | 100个 |
"
探测领域 | 变量 | 高度层次 | 精度 | 水平 分 辨率 | 垂直分辨率 | 观测周期 | 及时性 | 覆盖范围 |
基本 | 大气温度 | 边界层 | 0.5 K1) | 0.5 km | 0.1 km | 15 min | 10 min | 全球 |
大气 | 1 K2) | 2 km | 0.25 km | 60 min | 30 min | |||
要素 | 3 K3) | 10 km | 1 km | 3h | 2h | |||
(其他单元格上标同,故略) | ||||||||
湿度 | 自由对流层 | 2% | 2 km | 0.3 km | 15 min | 15 min | 全球 | |
5% | 10 km | 0.4 km | 60 min | 30 min | ||||
10 % | 30 km | 1 km | 6h | 2h | ||||
风速(水平) | 边界层 | 1 m/s | 0.5 km | 0.1 km | 15 min | 15 min | 全球 | |
2 m/s | 2 km | 0.2 km | 60 min | 30 min | ||||
5 m/s | 10 km | 0.4 km | 12 h | 2h | ||||
水汽含量 | 整层 | 1 kg/m2 | 0.5 km | - | 15 min | 15 min | 全球 | |
2 kg/m2 | 5 km | 60 min | 30 min | |||||
5 kg/m2 | 20 km | 6h | 2h | |||||
云和降水 | 云水云冰 | 边界层、自 | 5% | 0.5 km | 0.1 km | 15 min | 15 min | 全球 |
由对流层 | 8% | 2 km | 0.17 km | 60 min | 30 min | |||
20% | 10 km | 0.5 km | 3h | 2h | ||||
地表雨强 | 近地层 | 0.1 mm/h | 0.5 km | - | 15 min | 15 min | 全球 | |
0.2 mm/h | 2 km | 30 min | 30 min | |||||
1 mm/h | 10 km | 2h | 2h | |||||
气溶胶和辐射 | 射出长波辐射 | 大气层顶 | 5 W/m2 | 2 km | - | 30 min | 60 min | 全球 |
10 W/m2 | 10 km | 60 min | 3h | |||||
20 W/m2 | 50 km | 6h | 12 h | |||||
海洋 | 有效波高 | 海洋表面 | 0.1 m | 5 km | - | 30 min | 10 min | 全球海洋 |
0.3 m | 10 km | 3h | 30 min | |||||
0.5 m | 40 km | 6h | 3h | |||||
海冰厚度 | 海洋表面 | 20 cm | 2 km | - | 12 h | 12 h | 全球海洋 | |
50 cm | 10 km | 24 h | 24 h | |||||
100 cm | 40 km | 2d | 3d | |||||
陆地 | 地表温度 | 陆地表面 | 0.5 K | 1 km | - | 15 min | 15 min | 全球陆地 |
1K | 5 km | 30 min | 30 min | |||||
3K | 20 km | 2h | 2h | |||||
叶面积指数 | 陆地表面 | 5% | 1 km | - | 12 h | 24 h | 全球陆地 | |
10% | 5 km | 24 h | 3d | |||||
20% | 40 km | 2d | 7d | |||||
土壤水含量 | 陆地表面 | 0.02 m3/m3 | 1 km | - | 60 min | 30 min | 全球陆地 | |
0.04 m3/m3 | 5 km | 3h | 60 min | |||||
0.08 m3/m3 | 40 km | 6h | 6h | |||||
大气化学 | 臭氧含量 | 整层 | 5 mol/mol | 5 km | 1 km | 15 min | 15 min | 全球 |
10 mol/mol | 20 km | 1.4 km | 60 min | 30 min | ||||
20 mol/mol | 100 km | 3 km | 6h | 2h | ||||
注:上标1)表示最优目标,2)表示技术突破值,3)表示门槛阈值。来源于WMOOSCAR网站。 |
[1] | BAUER P , THORPE A , BRUNET G . The quiet revolution of numerical weather prediction[J]. Nature, 2015,525(7567): 47-55. |
[2] | RAUSER F , ALQADI M , AROWOLO S ,et al. Earth system science frontiers:an early career perspective[J]. Bulletin American Meteorological Society, 2017,98(6): 1119-1127. |
[3] | 金荣花, 代刊, 赵瑞霞 ,等. 我国无缝隙精细化网格天气预报技术进展与挑战[J]. 气象, 2019,45(4): 445-457. |
JIN R H , DAI K , ZHAO R X ,et al. Progress and challenge of seamless fine gridded weather forecasting technology in China[J]. Meteorological Monthly, 2019,45(4): 445-457. | |
[4] | 王毅, 周庆亮, 代刊 ,等. 全球数据处理和预报系统发展及展望[J]. 气象科技进展, 2019,9(2): 6-10. |
WANG Y , ZHOU Q L , DAI K ,et al. Development and outlook of global dataprocessing and forecasting system[J]. Advances in Meteorological Science and Technology, 2019,9(2): 6-10. | |
[5] | 张文建 . 世界气象组织全球综合观测系统(WIGOS)空间部分2040年远景发展规划的解读[J]. 气象科技进展, 2016,6(1): 135-145. |
ZHANG W J . Interpretation of the 2040 long term development plan for space in WMO global integrated observing system(WIGOS)[J]. Advances in Meteorological Science and Technology, 2016,6(1): 135-145. | |
[6] | EYRE J R , . Progress achieved on assimilation of satellite data in numerical weather prediction over the last 30 years[C]// ECMWF Seminar on Recent Development in the Use of Satellite Observations in NWP.[S.l.:s.n.], 2007. |
[7] | 董佩明, 薛纪善, 黄兵 ,等. 数值天气预报中卫星资料同化应用现状和发展[J]. 气象科技, 2008,36(1): 1-7. |
DONG P M , XUE J S , HUANG B ,et al. Application status and development of satellite data assimilation in numerical weather forecast[J]. Meteorological Science and Technology, 2008,36(1): 1-7. | |
[8] | 沈学顺, 王建捷, 李泽椿 ,等. 中国数值天气预报的自主创新发展[J]. 气象学报, 2020,78(3): 451-476. |
SHEN X S , WANG J J , LI Z C ,et al. China’s independent and innovative development of numerical weather prediction[J]. Acta Meteorologica Sinica, 2020,78(3): 451-476. | |
[9] | 李德仁, 张良培, 夏桂松 . 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014,43(12): 1211-1216. |
LI D R , ZHANG L P , XIA G S . Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(12): 1211-1216. | |
[10] | ZIKOPOULOS P , EATON C , DEROOS D ,et al. Understanding of big data[M]. New York: Mc Graw Hill, 2012. |
[11] | 曹海翊, 高洪涛, 赵晨光 . 我国陆地定量遥感卫星技术发展[J]. 航天器工程, 2018,27(4): 1-9. |
CAO H Y , GAO H T , ZHAO C G . Development of China land quantitative remote sensing satellite technology[J]. Spacecraft Engineering, 2018,27(4): 1-9. | |
[12] | 黄耀辉, 赵晓磊, 阎诚 ,等. 中法海洋卫星及典型应用[J]. 卫星应用, 2020(5): 32-37. |
HUANG Y H , ZHAO X L , YAN C ,et al. Sino French ocean satellite and its typical applications[J]. Satellite Application, 2020(5): 32-37. | |
[13] | 张文建 . 世界气象组织综合观测系统(WIGOS)[J]. 气象, 2010,36(3): 1-8. |
ZHANG W J . WMO integrated global observing system(WIGOS)[J]. Meteorological Monthly, 2010,36(3): 1-8. | |
[14] | 宋学儒, 崔新东, 翟宇梅 ,等. 面向海表盐度和温度遥感的微波辐射计研究综述[J]. 航天器工程, 2021,30(1): 108-114. |
SONG X R , CUI X D , ZHAI Y M ,et al. Remote sensing of sea surface salinity and temperature with microwave radiometers research review[J]. Spacecraft Engineering, 2021,30(1): 108-114. | |
[15] | 董超华, 李俊, 张鹏 . 卫星高光谱红外大气遥感原理和应用[M]. 北京: 科学出版社, 2013. |
DONG C H , LI J , ZHANG P . Principle and application of satellite hyperspectral infrared atmospheric remote sensing[M]. Beijing: Science Press, 2013. | |
[16] | 王宁, 平凡 . 垂直分辨率对广州“5·7”特大暴雨数值模拟影响的研究[J]. 大气科学, 2019,43(6): 1245-1264. |
WANG N , PING F . The impact of vertical resolution at different levels on the numerical simulation of the torrential rain in Guangzhou on 7 may 2017[J]. Chinese Journal of Atmospheric Sciences, 2019,43(6): 1245-1264. | |
[17] | 付琨, 孙显, 仇晓兰 ,等. 遥感大数据条件下多星一体化处理与分析[J]. 遥感学报, 2021,25(3): 691-707. |
FU K , SUN X , QIU X L ,et al. Multisatellite integrated processing and analysis method under remote sensing big data[J]. National Remote Sensing Bulletin, 2021,25(3): 691-707. | |
[18] | BAUER P , GEER A J , LOPEZ P ,et al. Direct 4D-var assimilation of all-sky radiances.part I:implementation[J]. Quarterly Journal of the Royal Meteorological Society, 2010,136(652): 1868-1885. |
[19] | 马旭林, 陆续, 于月明 ,等. 数值天气预报中集合-变分混合资料同化及其研究进展[J]. 热带气象学报, 2014,30(6): 1188-1195. |
MA X L , LU X , YU Y M ,et al. Progress on hybrid ensemble-variational data assimilation in numerical weather prediction[J]. Journal of Tropical Meteorology, 2014,30(6): 1188-1195. | |
[20] | 窦芳丽, 陆其峰, 郭杨 . 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019,34(11): 1120-1130. |
DOU F L , LU Q F , GUO Y . Overview of researches on all-sky satellite microwave data variational assimilation[J]. Advances in Earth Science, 2019,34(11): 1120-1130. | |
[21] | 和玉君, 刘咪咪, 王斌 . 年代际预测和耦合资料同化研究综述[J]. 地球物理学报, 2020,63(1): 1-18. |
HE Y J , LIU M M , WANG B . Review on the study of decadal prediction and coupled data assimilation[J]. Chinese Journal of Geophysics, 2020,63(1): 1-18. | |
[22] | 孙丞虎, 李维京 . 观测资料与模式的协调性对同化效果的影响[J]. 大气科学, 2009,33(4): 796-810. |
SUN C H , LI W J . The impact of compatibility between dynamic model and observational data on data assimilation[J]. Chinese Journal of Atmospheric Sciences, 2009,33(4): 796-810. | |
[23] | 许小峰 . 从物理模型到智能分析:降低天气预报不确定性的新探索[J]. 气象, 2018,44(3): 341-350. |
XU X F . From physical model to intelligent analysis:a new exploration to reduce the uncertainty of weather forecast[J]. Meteorological Monthly, 2018,44(3): 341-350. | |
[24] | 张兵 . 遥感大数据时代与智能信息提取[J]. 武汉大学学报·信息科学版, 2018,43(12): 1861-1871. |
ZHANG B . Remotely sensed big data era and intelligent information extraction[J]. Geomatics and Information Science of Wuhan University, 2018,43(12): 1861-1871. | |
[25] | 孙健, 曹卓, 李恒 ,等. 人工智能技术在数值天气预报中的应用[J]. 应用气象学报, 2021,32(1): 1-11. |
SUN J , CAO Z , LI H ,et al. Application of artificial intelligence technology to numerical weather prediction[J]. Journal of Applied Meteorological Science, 2021,32(1): 1-11. |
[1] | Haihong QIAN, Maoyi WANG, Yun XIONG. Digital transformation in higher education:a systematic review [J]. Big Data Research, 2023, 9(3): 56-70. |
[2] | Hong MEI, Xiaoyong DU, Hai JIN, Xueqi CHENG, Yunpeng CHAI, Xuanhua SHI, Xiaolong JIN, Yasha WANG, Chi LIU. Big data technologies forward-looking [J]. Big Data Research, 2023, 9(1): 1-20. |
[3] | Yang SHEN, Menglong YU. Metaverse and big data: data insight and value connection in spatio-temporal intelligence [J]. Big Data Research, 2023, 9(1): 103-110. |
[4] | Tongzheheng ZHENG, Bin LI, Minxuan FENG, Bolin CHANG, Dongbo WANG. Explore the structuration of historical books:the construction and quantitative analysis of digital humanities database of the Biographies of the Shiji [J]. Big Data Research, 2022, 8(6): 40-55. |
[5] | Jing CHEN. Humanities big data and its application in the field of digital humanities [J]. Big Data Research, 2022, 8(6): 3-14. |
[6] | Yuchu LUO, Hao WU, Yuhan GUO, Shaocong TAN, Can LIU, Ruike JIANG, Xiaoru YUAN. Visualization in digital humanities [J]. Big Data Research, 2022, 8(6): 74-93. |
[7] | Wenlong LI, Yuan YUAN, Xiaopeng AN. Modus operandi of big data governance: some preliminary observations [J]. Big Data Research, 2022, 8(4): 34-45. |
[8] | Qifeng TANG, Zhiqing SHAO, Yazhen YE. Authenticating and licensing architecture of data rights in data trade [J]. Big Data Research, 2022, 8(3): 40-53. |
[9] | Chenhuizi WANG, Wei CAI. Digital economics in metaverse: state-of-the-art, characteristics, and vision [J]. Big Data Research, 2022, 8(3): 140-150. |
[10] | Mei YANG, Wei LI, Siyuan QIAO, Wei LIU. Research on calculation method of China’s big data industry output value [J]. Big Data Research, 2022, 8(3): 151-160. |
[11] | Deren LI, Guo ZHANG, Yonghua JIANG, Xin SHEN, Weiling LIU. Opportunities and challenges of geo-spatial information science from the perspective of big data [J]. Big Data Research, 2022, 8(2): 3-14. |
[12] | Xiaolan QIU, Yuxin HU, Songtao SHANGGUAN, Kun FU. Remote sensing satellite big data high-recision integration processing technology [J]. Big Data Research, 2022, 8(2): 15-27. |
[13] | Weiquan LIU, Cheng WANG, Yu ZANG, Qian HU, Shangshu YU, Baiqi LAI. A survey on information extraction technology based on remote sensing big data [J]. Big Data Research, 2022, 8(2): 28-57. |
[14] | Jianqiang LIU, Xiaomin YE, Youguo LAN. Remote sensing big data from Chinese ocean satellites and its application service [J]. Big Data Research, 2022, 8(2): 75-88. |
[15] | Shenggu YUAN, Lun LUO, Ronggang GUO, Hengbin MAO, Fang WANG, Hongyue CAI, Heping XIAO. Applications of remote sensing big data in highway transportation [J]. Big Data Research, 2022, 8(2): 103-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|