[1] |
赛门铁克. 互联网安全威胁报告[R]. 2018.
|
|
Symantec. Internet security threat report[R]. 2018.
|
[2] |
LIAO H J , LIN C H R. , LIN Y C ,et al. Intrusion detection system:a comprehensive review[J]. J Netw Comput Appl, 2013,36(1): 16-24.
|
[3] |
CHOWDHURY M M U , XIN C , LI J ,et al. A few-shot deep learning approach for improved intru-sion detection[C]// IEEE Uemcon. 2017.
|
[4] |
KIM J , SHIN N , JO S Y ,et al. Method of intrusion detection using deep neural network[C]// 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). 2017: 313-316
|
[5] |
WANG W , SHENG Y , WANG J ,et al. HAST-IDS:learning hierarchical spatial-temporal features using deep neural networks to improve Intrusion detection[J]. IEEE Access, 2018,6(99): 1792-1806.
|
[6] |
JIA F , KONG L Z . Intrusion detection algorithm based on convolutional neural network[J]. Beijing Transaction of Beijing Institute of Technology, 2017,37(12): 1271-1275.
|
[7] |
SHONE N , NGOC T N , PHAI V D ,et al. A deep learning approach to network intrusion detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018,2(1): 41-50.
|
[8] |
DAVE D , VASHISHTHA S . Efficient intrusion detection with KNN classification and DS theory[C]// All India Seminar on Biomedical Engineering 2012 (AISOBE 2012). Springer, 2013: 173-188.
|
[9] |
ABUROMMAN A A , REAZ M B I . A novel SVM-kNN-PSO ensemble method for intrusion detection system[J]. Applied Soft Computing, 2016,38: 360-372.
|
[10] |
HOU S , SAAS A , CHEN L ,et al. Deep4MalDroid:a deep learning framework for android malware detection based on Linux kernel system call graphs[C]// 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW). 2016: 104-111.
|
[11] |
SHEN D , WU G , SUK H I . Deep learning in medical image analysis[J]. Annual Review of Biomedical Engineering, 2017,19(1): 221-248.
|
[12] |
LIU H , TANIGUCHI T , TANAKA Y ,et al. Essential feature extraction of driving behavior using a deep learning method[C]// Intelligent Vehicles Symposium. 2015: 1054-1060.
|
[13] |
GRM K,?TRUC V , ARTIGES A ,et al. Strengths and weaknesses of deep learning models for face recognition against image degradations[J]. Iet Biometrics, 2018,7(1): 81-89.
|
[14] |
GARDNER M , GRUS J , NEUMANN M ,et al. AllenNLP:a deep semantic natural language processing platform[J]. Computer Science Bibliograph, 2018.
|
[15] |
ZHAO R , YAN R , CHEN Z . Deep learning and its applications to machine health monitoring:a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016,14(8): 1-14.
|
[16] |
DONG B , WANG X . Comparison deep learning method to traditional methods using for network intrusion detection[C]// 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN). 2016: 581-585.
|
[17] |
XU J , XIANG L , LIU Q ,et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images[C]// IEEE International Symposium on Biomedical Imaging. 2014: 119-130.
|
[18] |
DONG W , YUAN T , YANG K ,et al. Autoencoder regularized network for driving style representation learning[J]. arXiv:1701.01272, 2017.
|
[19] |
TAVALLAEE M , BAGHERI E , LU W ,et al. A detailed analysis of the KDD CUP 99 data set[C]// IEEE International Conference on Computational Intelligence for Security & Defense Applications. 2009: 1-6.
|
[20] |
THASEEN I S , KUMAR C A . Intrusion detection model using fusion of chi-square feature selection and multi class SVM[J]. Journal of King Saud University-Computer and Information Sciences, 2016,29(4).
|
[21] |
ALRAWASHDEH K , PURDY C . Toward an online anomaly intrusion detection system basedon deep learning[C]// 15th IEEE International Conference on Machine Learning and Applications (ICMLA). 2016: 195-200.
|