[1] |
SUWAJANAKORN S , SEITZ S M , KEMELMACHER-SHLIZERMAN I , . Synthesizing Obama:learning lip sync from audio[J]. ACM Transactions on Graphics (TOG), 2017,36: 1-13.
|
[2] |
SIAROHIN A , LATHUILIèRE S , TULYAKOV S ,et al. First order motion model for image animation[J]. ArXiv, 2019,abs/2003.00196.
|
[3] |
YI R , YE Z , ZHANG J ,et al. Audio-driven talking face video generation with learning-based personalized head pose[J]. arXiv:2002.10137v2, 2020.
|
[4] |
PRAJWAL K R , MUKHOPADHYAY R , NAMBOODIRI V P ,et al. A lip sync expert is all you need for speech to lip generation in the wild[C]// Proceedings of the 28th ACM International Conference on Multimedia. 2020: 484-492.
|
[5] |
HALIASSOS A , VOUGIOUKAS K , PETRIDIS S ,et al. Lips don't lie:a generalisable and robust approach to face forgery detection[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021: 5037-5047.
|
[6] |
FARHA Y A , GALL J . MS-TCN:multi-stage temporal convolutional network for action segmentation[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 3570-3579.
|
[7] |
QIAN Y Y , YIN G J , SHENG L ,et al. Thinking in frequency:face forgery detection by mining frequency-aware clues[C]// Proceedings of Computer Vision – ECCV 2020. 2020: 86-103.
|
[8] |
LI J M , XIE H T , LI J H ,et al. Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021: 6454-6463.
|
[9] |
CHEN S , YAO T P , CHEN Y ,et al. Local relation learning for face forgery detection[J]. arXiv:2105.02577, 2021.
|
[10] |
REN S Q , HE K M , GIRSHICK R ,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149.
|
[11] |
HUANG G , LIU Z , VAN DER MAATEN L ,et al. Densely connected convolutional networks[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2261-2269.
|
[12] |
SUN Y , WANG X G , TANG X O . Deep learning face representation from predicting 10,000 classes[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014: 1891-1898.
|
[13] |
WEN Y D , ZHANG K P , LI Z F ,et al. A discriminative feature learning approach for deep face recognition[C]// Proceedings of Computer Vision – ECCV 2016. 2016: 499-515.
|
[14] |
R?SSLER A , COZZOLINO D , VERDOLIVA L ,et al. FaceForensics++:learning to detect manipulated facial images[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019: 1-11.
|
[15] |
LI Y Z , YANG X , SUN P ,et al. Celeb-DF:a large-scale challenging dataset for DeepFake forensics[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 3204-3213.
|
[16] |
Faceswap. Faceswap github[EB].
|
[17] |
THIES J , ZOLLH?FER M , STAMMINGER M ,et al. Face 2 face:real-time face capture and reenactment of RGB videos[J]. ArXiv, 2019,abs/2007.14808.
|
[18] |
DeepFakes. Deepfakes github[EB].
|
[19] |
THIES J , ZOLLH?FER M , NIE?NER M . Real-time expression transfer for facial reenactment[J]. ACM Transactions on Graphics, 2015,34(6): 1-14.
|
[20] |
LI L Z , BAO J M , ZHANG T ,et al. Face X-ray for more general face forgery detection[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020: 5000-5009.
|
[21] |
KINGMA D P , BA J . Adam:a method for stochastic optimization[J]. CoRR. 2015,abs/1412.6980.
|
[22] |
FRIDRICH J J , KODOVSKY J , . Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012,7(3): 868-882.
|
[23] |
AFCHAR D , NOZICK V , YAMAGISHI J ,et al. MesoNet:a compact facial video forgery detection network[J]. 2018 IEEE International Workshop on Information Forensics and Security (WIFS), 2018: 1-7.
|
[24] |
CHOLLET F , . Xception:deep learning with depthwise separable convolutions[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 1800-1807.
|
[25] |
COZZOLINO D , POGGI G , VERDOLIVA L . Recasting residual-based local descriptors as convolutional neural networks:an application to image forgery detection[C]// Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. 2017: 159-164.
|
[26] |
BAYAR B , STAMM M C . A deep learning approach to universal image manipulation detection using a new convolutional layer[C]// Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. 2016: 5-10.
|
[27] |
RAHMOUNI N , NOZICK V , YAMAGISHI J ,et al. Distinguishing computer graphics from natural images using convolution neural networks[J]. 2017 IEEE Workshop on Information Forensics and Security (WIFS), 2017: 1-6.
|
[28] |
ZHOU P , HAN X T , MORARIU V I ,et al. Two-stream neural networks for tampered face detection[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017: 1831-1839.
|
[29] |
NGUYEN H H , FANG F M , YAMAGISHI J ,et al. Multi-task learning for detecting and segmenting manipulated facial images and videos[C]// Proceedings of 2019 IEEE 10th International Conference on Biometrics Theory,Applications and Systems. 2019: 1-8.
|
[30] |
MATERN F , RIESS C , STAMMINGER M . Exploiting visual artifacts to expose deepfakesand face manipulations[J]. 2019 IEEE Winter Applications of Computer Vision Workshops(WACVW), 2019: 83-92.
|
[31] |
LI Y , LYU S . Exposing DeepFake videos by detecting face warping artifacts[J]. ArXiv, 2019,abs/1811.00656.
|