[1] |
李艳霞, 柴毅, 胡友强 ,等. 不平衡数据分类方法综述[J]. 控制与决策, 2019,34(4): 673-688.
|
|
LI Y X , CAI Y , HU Y Q ,et al. A summary of the classification methods of unbalanced data[J]. Control and decision-making, 2019,34(4): 673-688.
|
[2] |
王攀, 陈雪娇 . 基于堆栈式自动编码器的加密流量识别方法[J]. 计算机工程, 2018,44(11): 140-147.
|
|
WANG P , CHEN X J . Encrypted traffic identification method based on stack automatic encoder[J]. Computer Engineering, 2018,44(11): 140-147.
|
[3] |
FINSTERBUSCH M , RICHTER C , ROCHA E ,et al. A survey of payload-based traffic classification approaches[J]. IEEE Communications Surveys & Tutorials, 2014,16(2): 1135-1156.
|
[4] |
DAINOTTI A , PESCAPE A , CLAFFY K C . Issues and future directions in traffic classification[J]. Network IEEE, 2012,26(1): 35-40.
|
[5] |
骆子铭, 许书彬, 刘晓东 . 基于机器学习的TLS恶意加密流量检测方案[J]. 网络与信息安全学报, 2020,6(1): 77-83.
|
|
LUO Z M , XU S B , LIU X D . TLS malicious encryption traffic detection scheme based on machinelearning[J]. Journal of Network and Information Security, 2020,6(1): 77-83.
|
[6] |
REZAEI S , LIU X . Deep learning for encrypted traffic classification:an overview[J]. IEEE Communications Magazine, 2019,57(5): 76-81.
|
[7] |
WEI W , MING Z , WANG J ,et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). 2017: 43-48.
|
[8] |
XIAO X , XIAO W , LI R ,et al. EBSNN:extended byte segment neural network for network traffic classification[J]. IEEE Transactions on Dependable and Secure Computing, 2021,10(1).
|
[9] |
朱文斌, 马秀丽 . 多种构图方式下的加密流量分类[J]. 电子测量技术, 2021,44(12): 87-92.
|
|
ZHU W B , MA X l . Classification of encrypted traffic under multiple composition methods[J]. Electronic Measurement Technology, 2021,44(12): 87-92.
|
[10] |
REZAEI S , LIU X . How to achieve high classification accuracy with just a few labels:a semi-supervised approach using sampled packets[J]. arXiv preprint arXiv:1812.09761, 2018.
|
[11] |
LOTFOLLAHI M , JAFARI SIAVOSHANI M , SHIRALI HOSSEIN ZADE R ,et al. Deep packet:a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020,24(3): 1999-2012.
|
[12] |
CHEN Z , HE K , LI J ,et al. Seq2img:a sequence-to-image based approach towards ip traffic classification using convolutional neural networks[C]// 2017 IEEE International Conference on Big Data. 2017: 1271-1276.
|
[13] |
ERTAM F , AVCI E . A new approach for internet traffic classification:GA-WK-ELM[J]. Measurement, 2017,95: 135-142.
|
[14] |
LOPEZ-MARTIN M , CARRO B , SANCHEZ-ESGUEVILLAS A , ,et al. Network traffic classifier with convolutional and recurrent neural networks for internet of things[J]. IEEE Access, 2017,(99): 1-1.
|
[15] |
WANG W , ZHU M , ZENG X ,et al. Malware traffic classification using convolutional neural network for representation learning[C]// 2017 International conference on information networking (ICOIN). 2017: 712-717.
|
[16] |
DRAPER-GIL G , LASHKARI A H , MAMUN M S I ,et al. Characterization of encrypted and VPN traffic using time-related[C]// Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP). 2016: 407-414.
|
[17] |
SZEGEDY C , TOSHEV A , ERHAN D . Deep neural networks for object detection[J]. Advances in Neural Information Processing Systems, 2013:26.
|