电信科学 ›› 2020, Vol. 36 ›› Issue (6): 14-27.doi: 10.11959/j.issn.1000-0801.2020175
惠宁1,2,3,伍杰1,2,3,周一青1,2,3,刘玲1,2,3,潘振岗4
修回日期:
2020-05-27
出版日期:
2020-06-20
发布日期:
2020-06-18
作者简介:
惠宁(1995- ),女,中国科学院计算技术研究所博士生,主要研究方向为通信与计算融合、移动边缘计算、车联网融合区块链技术等|伍杰(1994- ),男,中国科学院计算技术研究所硕士生,主要研究方向为通信与计算融合、无线定位技术、融合定位技术等|周一青(1975- ),女,中国科学院大学教授,中国科学院计算技术研究所“百人计划”研究员、博士生导师,无线通信技术研究中心副主任,移动计算与新型终端北京市重点实验室研究员,主要研究方向为移动通信、通信与计算融合等。已在相关领域发表论文100 多篇,曾获得WCSP2019、IEEE ICC2018、ISCIT2016、IEEE PIMRC2015、CCS2014、WCNC013最佳论文奖及China Communications、IEEE Transactions on Vehicular Technology 期刊最佳编辑奖等|刘玲(1990- ),女,中国科学院计算技术研究所助理研究员,主要研究方向为移动通信、通信与计算融合、无线资源管理等|潘振岗(1975- ),男,北京紫光展锐通信技术有限公司中央研究院先进通信技术实验室主任(副总裁),主要研究方向为无线信号处理、多天线系统、信道编解码、跨层优化等
基金资助:
Ning HUI1,2,3,Jie WU1,2,3,Yiqing ZHOU1,2,3,Ling LIU1,2,3,Zhengang PAN4
Revised:
2020-05-27
Online:
2020-06-20
Published:
2020-06-18
Supported by:
摘要:
面向安全、可靠的车辆行驶需求,车联网对信息传输和处理的实时性要求高、对数据存储和使用的安全性要求高、对网络架构的灵活性和包容性要求高。未来车辆雾计算网络基于雾计算部署于网络边缘的特点,可降低数据的传输和处理时延;基于雾计算黑盒操作的特点,有利于保障数据安全;基于雾计算分布式架构,可实现异构车辆节点的互联互通与资源共享。对未来车辆雾计算网络进行了综述,介绍了车辆雾计算的架构、挑战与关键技术,着重分析移动状态下的通信与计算资源的共享与任务协同处理、车辆雾计算的安全性以及车辆雾计算设施的异构性。最后提出了车辆雾计算网络三级管控架构,推动车联网向网联协同决策与控制发展。
中图分类号:
惠宁,伍杰,周一青,刘玲,潘振岗. 未来车辆雾计算网络[J]. 电信科学, 2020, 36(6): 14-27.
Ning HUI,Jie WU,Yiqing ZHOU,Ling LIU,Zhengang PAN. Future vehicular fog computing networks[J]. Telecommunications Science, 2020, 36(6): 14-27.
[60] | JIANG D , HUO L , LV Z ,et al. A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking[J]. IEEE Transactions on Intelligent Transportation Systems, 2018,19(10): 3305-3319. |
[61] | CHAKKAPHONG S , SUN Z . Multi-hop broadcast protocol in intermittently connected vehicular networks[J]. IEEE Transactions on Aerospace &Electronic Systems, 2018(99):1. |
[62] | TANG Y , CHENG N , WU W ,et al. Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction[J]. IEEE Transactions on Vehicular Technology, 2019,68(4): 3967-3979. |
[63] | ZHOU Z , XIONG F , XU C ,et al. Energy-efficient vehicular heterogeneous networks for green cities[J]. IEEE Transactions on Industrial Informatics, 2018,14(4): 1522-1531. |
[64] | HUANG W , DING L , MENG D ,et al. QoE-Based resource allocation for heterogeneous multi-radio communication in software-defined vehicle networks[J]. IEEE Access, 2018(6): 3387-3399. |
[65] | WANG T , CAO X , WANG S . Self-Adaptive clustering and load-bandwidth management for uplink enhancement in heterogeneous vehicular networks[J]. IEEE Internet of Things Journal, 2019,6(3): 5607-5617. |
[1] | ZHOU Y , TIAN L , LIU L ,et al. Fog computing enabled future mobile communication networks:a convergence of communication and computing[J]. IEEE Communication Magazine, 2019,57(5): 20-27. |
[2] | LIU L , ZHOU Y , YUAN J ,et al. Economically optimal MS association for multimedia content delivery in cache-enabled heterogeneous cloud radio access networks[J]. IEEE JSAC, 2019,37(7): 1584-1593. |
[3] | LIU L , ZHOU Y , ZHUANG W ,et al. Tractable coverage analysis for hexagonal macrocell-based heterogeneous UDN with adaptive interference aware CoMP[J]. IEEE Transactions on Wireless Communications, 2019,18(1): 503-517. |
[4] | LIU L , ZHOU Y , GARCIA V ,et al. Load aware joint CoMP clustering and inter-cell resource scheduling in heterogeneous ultra dense cellular networks[J]. IEEE Transactions on Vehicular Technology, 2018,67(3): 2741-2755. |
[5] | ZHOU Y , LIU H , PAN Z ,et al. Cooperative multicast with location aware distributed mobile relay selection:performance analysis and optimized design[J]. IEEE Transactions on Vehicular Technology, 2017,66(9): 8291-8302. |
[6] | 新华网. 车联网产业发展报告[EB]. 2019. |
Xinhuanet. Report on the development of internet of vehicles industry[EB]. 2019. | |
[7] | 互联网周刊. 车联网与大数据时代将产生无数应用前景[EB]. 2014. |
Internet weekly. Internet of vehicles and big data era will produce numerous application prospect[EB]. 2014. | |
[8] | IEEE. STD 1934-2018[S]. 2018. |
[9] | BOMOMI F , . Connected vehicles,the internet of things,and fog computing[C]// Proceedings of ACM International Workshop on Vehicular Inter-Networking (VANET). New York:ACM Press, 2011: 13-15. |
[10] | BONONMI F , MILITO R , ZHU J ,et al. Fog computing and its role in the internet of things[C]// Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. New York:ACM Press, 2012: 13-16. |
[11] | NI J , ZHANG A , LIN X ,et al. Security,privacy,and fairness in fog-based vehicular crowdsensing[J]. IEEE Communications Magazine, 2017,55(6):146–152. |
[12] | HUNG S , ZHANG X , FESTAG A ,et al. Vehicle-centric network association in heterogeneous vehicle-to-vehicle networks[J]. IEEE Transactions on Vehicular Technology, 2019,68(6): 5981-5996. |
[13] | MILOSEVIC M , BJELICA M Z , MARUNA T ,et al. Software platform for heterogeneous in-vehicle environments[J]. IEEE Transactions on Consumer Electronics, 2018,64(2): 213-221. |
[14] | RACHEDI A , BADIS H . BadZak:an hybrid architecture based on virtual backbone and software defined network for internet of vehicles[C]// Proceedings of IEEE International Conference on Communications(ICC). Piscataway:IEEE Press, 2018: 1-7. |
[15] | LIU Y , FIELDSEND J E , MIN G . A framework of fog computing:architecture,challenges,and optimization[J]. IEEE Access, 2017(5): 25445-25454. |
[16] | HOU X , LI Y , CHEN M ,et al. Vehicular fog computing:a viewpoint of vehicles as the infrastructures[J]. IEEE Transactions on Vehicular Technology, 2016,65(6):3860–3873. |
[17] | XIAO Y , ZHU C . Vehicular fog computing:vision and challenges[C]// Proceedings of IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). Piscataway:IEEE Press, 2017 6-9. |
[18] | TANZIL S M S , GHAREHSHIRAN O N , KRISHNAMURTHY V . Femto-cloud formation:a coalitional game-theoretic approach[C]// Proceedings of IEEE Global Communications Conference. Piscataway:IEEE Press, 2014: 1-6. |
[19] | OUEIS J , STRINATI E C , SARDELLITTI ,et al. Small cell clustering for efficient distributed fog computing:a multi-user case[C]// Proceedings of IEEE Vehicular Technology Conference. Piscataway:IEEE Press, 2016: 1-5. |
[20] | VONDRA M , BECVAR Z . QoS-ensuring distribution of computation load among cloud-enabled small cells[C]// Proceedings of 3rd IEEE International Conference on Cloud Networking. Piscataway:IEEE Press, 2014: 197-203. |
[21] | LIAO H S , CHEN P Y , CHEN W T . An efficient downlink radio resource allocation with carrier aggregation in LTE-Advanced networks[J]. IEEE Transactions on Mobile Computing, 2014,13(13): 2229-2239. |
[22] | KLAIMI J , SENOUCI S M , MESSOUS M A . Theoretical game approach for mobile users resource management in a vehicular fog computing environment[C]// Proceedings of 14th International Wireless Communications & Mobile Computing Conference (IWCMC). Piscataway:IEEE Press, 2018: 452-457. |
[23] | WANG Z , ZHAO Z W , MIN G Y ,et al. User mobility aware task assignment for mobile edge computing[J]. Future Generation Computer Systems, 2018(85): 1-8. |
[24] | WANG C , LI Y , JIN D . Mobility-assisted opportunistic computation offloading[J]. IEEE Communications Letters, 2014,18(10): 1779-1782. |
[25] | HOU X S , LI Y , CHEN M ,et al. Vehicular fog computing:a viewpoint of vehicles as the infrastructures[J]. IEEE Transactions on Vehicular Technology, 2016,65(6): 3860-3873. |
[26] | NING Z L , HUANG J , WANG X J . Vehicular fog computing:enabling real-time traffic management for smart cities[J]. IEEE Wireless Communications, 2019,26(1): 87-93 |
[27] | ZHANG G W , SHEN F , YANG Y ,et al. Fair task offloading among fog nodes in fog computing networks[C]// Proceedings of IEEE International Conference on Communications(ICC). Piscataway:IEEE Press, 2018: 1-6. |
[28] | SUN F , HOU F , CHENG N ,et al. Cooperative task scheduling for computation offloading in vehicular cloud[J]. IEEE Transactions on Vehicular Technology, 2018,67(11): 11049-11061. |
[29] | SUN Y , GUO X , ZHOU S ,et al. Learning-based task offloading for vehicular cloud computing systems[C]// Proceedings of IEEE International Conference on Communications(ICC). Piscataway:IEEE Press, 2018: 1-7. |
[30] | ZHU C , TAO J , PASTOR G ,et al. Folo:latency and quality optimized task allocation in vehicular fog computing[J]. IEEE Internet of Things Journal, 2019,6(3): 4150-4161. |
[31] | WANG Z , ZHONG Z D , NI M M . Application-aware offloading policy using SMDP in vehicular fog computing systems[C]// Proceedings of IEEE International Conference on Communications(ICC). Piscataway:IEEE Press, 2018: 1-6. |
[32] | AUJLA G S , CHAUDHARY R , KUMAR N ,et al. Data offloading in 5G-enabled software-defined vehicular networks:A stackelberg-game-based approach[J]. IEEE Communications Magazine, 2017,55(8): 100-108. |
[33] | BAO W , YUAN D , YANG Z J ,et al. Follow me fog:toward seamless handover timing schemes in a fog computing environment[J]. IEEE Communications Magazine, 2017,55(11): 72-78. |
[34] | WANG K , SHEN M , BANERJEE J ,et al. MobiScud:a fast moving personal cloud in the mobile network[C]// Proceedings of Workshop on All Things Cellular:Operations. New York:ACM Press, 2015: 19-24. |
[35] | WANG S , URGAONKAR R , HE T ,et al. Mobility-induced service migration in mobile micro-clouds[C]// Proceedings of IEEE Military Communications Conference. Piscataway:IEEE Press, 2014: 835-840. |
[36] | KSENTINI A , TALEB T , CHEN M . A Markov decision processbased service migration procedure for follow me cloud[C]// Proceedings of IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2014: 1350-1354. |
[37] | TALEB T , KSENTINI A , FRANGOUDIS P . Follow-me cloud:when cloud services follow mobile users[J]. IEEE Transactions on Cloud Computing, 2016,7(2): 1350-1354. |
[38] | ZHANG F , LIU G , FU X ,et al. A survey on virtual machine migration:challenges,techniques,and open issues[J]. IEEE Communications Surveys & Tutorials, 2018,20(2): 1206-1243. |
[39] | 黄语骁 . 车联网网络安全技术研究[J]. 电子世界, 2018(19): 49-50. |
HUANG Y X . Research on internet of vehicles network security technology[J]. Electronic World, 2018(19): 49-50. | |
[40] | 刘晓曼, 罗成, 田慧蓉 ,等. 车联网网络安全管理与技术研究[J]. 电信网技术, 2017(4): 1-4. |
LIU X M , LUO C , TIAN H R ,et al. Research on network security management and technology of internet of vehicles[J]. Telecommunication Network Technology, 2017(4): 1-4. | |
[41] | 周巍, 朱雪田, 夏旭 . 面向5G的车联网安全业务研究[J]. 电子技术应用, 2019,45(12): 34-37. |
ZHOU W , ZHU X T , XIA X . Research on 5G internet of vehicles security service[J]. Electronic and Applied Technology, 2019,45(12): 34-37. | |
[42] | 冯凯, 李巍, 龚洁中 . 车联网中密码算法应用现状分析[J]. 中国信息安全, 2019(9): 97-99. |
FENG K , LI W , GONG J Z . Analysis on the application status of cryptographic algorithms in internet of vehicles[J]. China Information Security, 2019(9): 97-99. | |
[43] | KATZ M , PIRINEN P , POSTI H . Towards 6G:getting ready for the next decade[C]// Proceedings of 16th International Symposium on Wireless Communication Systems (ISWCS). Piscataway:IEEE Press, 2019: 714-718. |
[44] | DAI Y Y , XU D , MAHARJAN S ,et al. Blockchain and deep reinforcement learning empowered intelligent 5G beyond[J]. IEEE Network, 2019,33(3): 10-17. |
[45] | XIONG Z H , ZHANG Y , NIYATO D ,et al. When mobile blockchain meets edge computing[J]. IEEE Communications Magazine, 2018,56(8): 33-39. |
[46] | WEISS M B H , WERBACH K , SICKER D C ,et al. On the application of blockchains to spectrum management[J]. IEEE Transactions on Cognitive Communications and Networking, 2019,5(2): 193-205. |
[47] | DAI Y , XU D , MAHARJAN S ,et al. Blockchain and deep reinforcement learning empowered intelligent 5G beyond[J]. IEEE Network, 2019,33(3): 10-17. |
[48] | WEISS M , WERBACH K , SICKER D ,et al. On the application of blockchains to spectrum management[J]. IEEE Transactions on Cognitive Communications and Networking, 2019,5(2): 193-205. |
[49] | ZHOU Z , CHEN X , ZHANG Y ,et al. Blockchain-empowered secure spectrum sharing for 5G heterogeneous networks[J]. IEEE Network, 2020,34(1): 24-31. |
[50] | SINGH M , KIM S . Crypto trust point (cTp) for secure data sharing among intelligent vehicles[C]// Proceedings of International Conference on Electronics,Information,and Communications (ICEIC). Piscataway:IEEE Press, 2018: 1-4. |
[51] | SHARMA S , GHANSHALA K K , MOHAN S . Blockchainbased internet of vehicles (IoV):an efficient secure Ad Hoc vehicular networking architecture[C]// Proceedings of IEEE 2nd 5G World Forum(5GWF). Piscataway:IEEE Press, 2019: 452-457. |
[52] | LEE S O , JUNG H , HAN B . Security assured vehicle data collection platform by blockchain:service provider’s perspective[C]// Proceedings of 21st International Conference on Advanced Communication Technology (ICACT). Piscataway:IEEE Press, 2019: 265-268. |
[53] | 夏景 . 基于工业互联网数据转化的船舶机械设备多元异构集成平台研究[J]. 船舶物资与市场, 2019(7): 34-35. |
XIA J . Research on multiple heterogeneous integration platform of Marine machinery and equipment based on industrial Internet data conversion[J]. Marine Equipment Materials & Marketing, 2019(7): 34-35. | |
[54] | QIAO G , LENG S , ZHANG K ,et al. Collaborative task offloading in vehicular edge multi-access networks[J]. IEEE Communications, 2018,56(8): 48-54. |
[55] | AAZAM M , HUH E . Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT[C]// Proceedings of 2015 IEEE 29th International Conference on Advanced Information Networking and Applications. Piscataway:IEEE Press, 2015: 687-694. |
[56] | EICHHORN M , PFANNENSTEIN M , MUHAR D . A SOA-based middleware concept for in-vehicle service discovery and device integration[C]// Proceedings of IEEE Intelligent Vehicles Symposium. Piscataway:IEEE Press, 2010: 663-669. |
[57] | CHEIKH F B , MASTOURI M A , HASNAOUI S . Implementing a Real-Time Middleware Based on DDS for the Cooperative Vehicle Infrastructure Systems[C]// Proceedings of 6th International Conference on Wireless and Mobile Communications. Piscataway:IEEE Press, 2010: 492-497. |
[58] | OUEDRAOGO C A , MEDJIAH S , CHASSOT C . A modular framework for dynamic QoS management at the middleware level of the IoT:application to a OneM2M compliant IoT platform[C]// Proceedings of IEEE International Conference on Communications(ICC). Piscataway:IEEE Press, 2018: 1-7. |
[59] | LIU Y , WANG W , MA Y ,et al. Distributed task offloading in heterogeneous vehicular crowd sensing[J]. Sensors, 2016,16(7):1090. |
[1] | 张志龙, 张天琦, 李雪菲, 刘丹谱. 基于计算控制通信融合的车联网资源协同优化技术研究[J]. 电信科学, 2023, 39(4): 17-30. |
[2] | 谭艳霞, 王光全, 王泽林, 郑滟雷, 张贺, 张晨芳, 韩赛, 沈世奎. SDN智能管控编排系统技术方案研究[J]. 电信科学, 2023, 39(3): 143-152. |
[3] | 李涛, 王春佳, 李姗姗. 电信网络智能化方案研究[J]. 电信科学, 2023, 39(3): 162-172. |
[4] | 陈滏媛, 董振江, 董建阔, 徐敏杰. 车联网安全防护技术综述[J]. 电信科学, 2023, 39(3): 1-15. |
[5] | 葛雨明, 毛祺琦. 车联网新型基础设施跨域协同部署研究[J]. 电信科学, 2023, 39(3): 24-31. |
[6] | 王鲲, 董振江, 杨凡, 周谷越. 基于C-V2X的车路协同自动驾驶关键技术与应用[J]. 电信科学, 2023, 39(3): 45-60. |
[7] | 顾博, 敖婷. 基于MEC的定位技术在车联网中的应用[J]. 电信科学, 2022, 38(Z1): 250-258. |
[8] | 贺智敏, 林育哲, 程宇杰, 闫实. 基于无线感知辅助的车联网下行无线资源分配方法[J]. 电信科学, 2022, 38(9): 60-70. |
[9] | 王晴天, 刘洋, 刘海涛, 宗佳颖, 杨峰义. 面向6G的网络智能化研究[J]. 电信科学, 2022, 38(9): 151-160. |
[10] | 胥柯, 向路平, 胡杰, 杨鲲. 基于正交时频空间调制的通信感知一体化系统的公平性功率分配方案[J]. 电信科学, 2022, 38(9): 50-59. |
[11] | 冯楠, 刘贺林, 周泉, 杨海俊, 付蜜能, 钟大平. 5G核心网业务模型的智能化预测研究[J]. 电信科学, 2022, 38(8): 111-119. |
[12] | 王亚峰, 梁春花, 朱兰兰, 王晓平. 5G银行行业专网解决方案研究[J]. 电信科学, 2022, 38(5): 45-53. |
[13] | 缪德山, 柴丽, 孙建成, 柯颋, 刘玉真, 徐晓东, 胡南, 陈山枝. 5G NTN关键技术研究与演进展望[J]. 电信科学, 2022, 38(3): 10-21. |
[14] | 张博源, 黄学艳, 赵振山, 张世昌, 马腾, 刘亮. 直通链路技术的发展与展望[J]. 电信科学, 2022, 38(3): 22-36. |
[15] | 朱明伟. 网络智能化中的AI工程化技术方案[J]. 电信科学, 2022, 38(2): 157-165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|