[1] |
GE X H , QIU Y H , CHEN J Q ,et al. Wireless fractal cellular networks[J]. IEEE Wireless Communications, 2016,23(5): 110-119.
|
[2] |
CHEN J Q , GE X H , NI Q ,et al. Coverage and handoff analysis of 5G fractal small cell networks[J]. IEEE Transactions on Wireless Communications, 2019,18(2): 1263-1276.
|
[3] |
HU Y , LI H , CHANG Z ,et al. Scheduling strategy for multimedia heterogeneous high-speed train networks[J]. IEEE Transactions on Vehicular Technology, 2017,66(4): 3265-3279.
|
[4] |
SUN N , ZHAO Y , SUN L ,et al. Distributed and dynamic resource management for wireless service delivery to high-speed trains[J]. IEEE Access, 2017(5): 620-632.
|
[5] |
TANG Q , LONG H , YANG H J ,et al. An enhanced LMMSE channel estimation under high speed railway scenarios[C]// Proceedings of 2017 IEEE International Conference on Communications Workshops. Piscataway:IEEE Press, 2017: 999-1004.
|
[6] |
SHARMA P , CHANDRA K . Prediction of state transitions in rayleigh fading channels[J]. IEEE Transactions on Vehicular Technology, 2007,56(2): 416-425.
|
[7] |
HALLEN A D , HALLEN H , YANG T S . Long range prediction and reduced feedback for mobile radio adaptive OFDM systems[J]. IEEE Transactions on Wireless Communications, 2006,5(10): 2723-2732.
|
[8] |
WEI P , LI W G , WANG W ,et al. Downlink channel prediction for time-varying FDD massive MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2019,13(5): 1090-1102.
|
[9] |
WEI P , MENG Z , and TAO J . Channel prediction in time- varying massive MIMO environments[J]. IEEE Access, 2017(5): 23938-23946.
|
[10] |
DONG Z , ZHAO Y , CHEN Z . Support vector machine for channel prediction in high-speed railway communication systems[C]// Proceedings of 2018 IEEE MTT-S International Wireless Symposium (IWS). Piscataway:IEEE Press, 2018: 1-3.
|
[11] |
DING T , HIROSE A . Fading channel prediction based on combination of complex-valued neural networks and chirp Z-transform[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014,25(9): 1686-1695.
|
[12] |
ZHAO Y , GAO H , BEAULIEU N C , CHEN Z ,et al. Echo state network for fast channel prediction in rice of fading scenarios[J]. IEEE Communications Letters, 2017,21(3): 672-675.
|
[13] |
LIAO R F , WEN H , WU J S ,et al. The rayleigh fading channel prediction via deep learning[J]. Wireless Communications and Mobile Computing, 2018,11.
|
[14] |
ABRISHAMKAR F , IRVINE J . Comparison of current solutions for the provision of voice services to passengers on high speed trains[C]// Proceedings of IEEE Vehicular Technology Conference. Piscataway:IEEE Press, 2000: 2068-2075.
|
[15] |
GOLLER M , . Application of GSM in high speed trains:measurements and simulations[C]// Proceedings of IEEE Colloquium on Radio Communications in Transportation. Piscataway:IEEE Press, 1995: 1-7.
|
[16] |
3GPP. Initial ideal simulation results for different high speed propagation scenarios:TSG-RAN4-37 (R4-051274)[S]. 2005.
|
[17] |
院琳, 杨雪松, 王秉中 . 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测[J]. 物理学报, 2019,68(17): 72-79.
|
|
YUAN L , YANG X S , WANG B Z . The neural network model optimized by empirical knowledge genetic algorithm realizes time inversion channel prediction[J]. Acta Physica Sinica, 2019,68(17): 72-79.
|
[18] |
JIANG W , SCHOTTEN H D . Neural network-based channel prediction and its performance in multi-antenna systems[C]// Proceedings of 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). Piscataway:IEEE Press, 2018: 1-6.
|
[19] |
吕长伟 . OFDM系统时域信道预测算法研究[D]. 北京:北京理工大学, 2015.
|
|
LV C W . Research on time-domain channel prediction algorithm for OFDM system[D]. Beijing:Beijing Institute of Technology, 2015.
|