电信科学 ›› 2021, Vol. 37 ›› Issue (5): 72-81.doi: 10.11959/j.issn.1000-0801.2021107
唐博恒, 柴鑫刚
修回日期:
2021-05-10
出版日期:
2021-05-20
发布日期:
2021-05-01
作者简介:
唐博恒(1992− ),男,中国移动通信有限公司研究院工程师,主要研究方向为智慧城市、视频监控、计算机视觉、图像算法与算法的应用落地Boheng TANG, Xingang CHAI
Revised:
2021-05-10
Online:
2021-05-20
Published:
2021-05-01
摘要:
深度学习和云计算的普及推动了计算机视觉在各行业中的广泛应用。但集中化的云端推理服务存在带宽资源消耗大、图像数据隐私泄露、时效性难以满足等问题,难以充分满足计算机视觉在行业应用上的多样化应用需求。而通信网络的双吉比特升级将促进视觉算法云边算法深层次协同。对基于云边协同的计算机视觉推理机制开展研究。首先对近年主流的云侧和边缘侧计算机视觉推理模型的优劣势进行了分析和阐述,然后在此基础上对云边协同计算机视觉推理模型框架、部署机制等开展研究,详细讨论模型分布式推理模型分割策略,云边协同网络部署优化策略。最后通过数据协同、网络分区协同、业务功能协同 3 方面对云边协同深度推理未来的发展挑战进行了展望。
中图分类号:
唐博恒, 柴鑫刚. 基于云边协同的计算机视觉推理机制[J]. 电信科学, 2021, 37(5): 72-81.
Boheng TANG, Xingang CHAI. Cloud-edge collaboration based computer vision inference mechanism[J]. Telecommunications Science, 2021, 37(5): 72-81.
表1
云侧模型算法资源与精度比较[8]"
网络名称 | 网络深度 | 参数数量/MB | 浮点运算数量/109次 | Top1错误率 |
AlexNet | 8 | 61 | 1.45 | 36.7% |
VGG16 | 16 | 138 | 31.0 | 25.6% |
Inception-v1 | 22 | 5 | 2.86 | 30.2% |
Inception-v2 | 42 | 11 | 4.0 | 25.2% |
Inception-v3 | 48 | 24 | 11.4 | 21.2% |
Inception-v4 | 76 | 35 | 24.5 | 19.9% |
ResNet-152 | 152 | 60 | 22.6 | 19.4% |
ResNeXt | 50 | 68 | 8.4 | 19.1% |
DenseNet | 201 | 20 | 8.4 | 13.6% |
[1] | VéSTIAS M P , DUARTE R P , DE SOUSA J T ,et al. Moving deep learning to the edge[J]. Algorithms, 2020,13(5): 125. |
[2] | LE CUN Y , JACKEL L D , BOSER B ,et al. Handwritten digit recognition:applications of neural network chips and automatic learning[J]. IEEE Communications Magazine, 1989,27(11): 41-46. |
[3] | KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012(25): 1097-1105. |
[4] | SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014. |
[5] | SZEGEDY C , LIU W , JIA Y Q ,et al. Going deeper with convolutions[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2015: 1-9. |
[6] | HE K , ZHANG X , REN S ,et al. Deep residual learning for image recognition[C]// Proceedings of the2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 770-778. |
[7] | Huang G , Liu Z , Van Der Maaten L ,et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 4700-4708. |
[8] | HU J , SHEN L , SUN G . Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 7132-7141. |
[9] | HAN S , POOL J , TRAN J ,et al. Learning both weights and connections for efficient neural networks[J]. arXiv preprint arXiv:1506.02626, 2015. |
[10] | HAN S , MAO H , DALLY W J . Deep compression:compressing deep neural networks with pruning,trained quantization and huffman coding[J]. arXiv preprint arXiv:1510.00149, 2015. |
[11] | GUO Y , YAO A , CHEN Y . Dynamic network surgery for efficient dnns[J]. arXiv preprint arXiv:1608.04493, 2016. |
[12] | MAO H , HAN S , POOL J ,et al. Exploring the regularity of sparse structure in convolutional neural networks[J]. arXiv preprint arXiv:1705.08922, 2017. |
[13] | HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015. |
[14] | CHEN J , RAN X . Deep Learning With Edge Computing: AReview[J]. Proceedings of the IEEE, 2019,107(8): 1655-1674. |
[15] | LACEY G , TAYLOR G W , AREIBI S . Deep learning on fpgas:Past,present,and future[J]. arXiv preprint arXiv:1602.04283, 2016. |
[16] | NING Z , FENG Y , COLLOTTA M ,et al. Deep learning in edge of vehicles:Exploring trirelationship for data transmission[J]. IEEE Transactions on Industrial Informatics, 2019,15(10): 5737-5746. |
[17] | IANDOLA F N , HAN S , MOSKEWICZ M W ,et al. SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size[J]. arXiv preprint arXiv:1602.07360, 2016. |
[18] | GHOLAMI A , KWON K , WU B ,et al. Squeezenext: Hardware-aware neural network design[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE Press, 2018: 1638-1647. |
[19] | ZHANG X , ZHOU X , LIN M ,et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 6848-6856. |
[20] | HUANG G , LIU S , VAN DER MAATEN L ,et al. Condensenet:an efficient densenet using learned group convolutions[C]// Proceedings of the2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 2752-2761. |
[21] | ZOPH B , VASUDEVAN V , SHLENS J ,et al. Learning transferable architectures for scalable image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8697-8710. |
[22] | LIU C , ZOPH B , NEUMANN M ,et al. Progressive neural architecture search[C]// Proceedings of the European Conference on Computer Vision (ECCV). Piscataway:IEEE Press, 2018: 19-34. |
[23] | TAN M , CHEN B , PANG R ,et al. Mnasnet: platform-aware neural architecture search for mobile[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 2820-2828. |
[24] | HOWARD A G , ZHU M , CHEN B ,et al. Mobilenets:efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017. |
[25] | SANDLER M , HOWARD A , ZHU M ,et al. Mobilenetv2:inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520. |
[26] | HOWARD A , SANDLER M , CHU G ,et al. Searching for mobilenetv3[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE Press, 2019: 1314-1324. |
[27] | ZOPH B , LE Q V . Neural architecture search with reinforcement learning[J]. arXiv preprint arXiv:1611.01578, 2016. |
[28] | SHI W , CAO J , ZHANG Q ,et al. Edge computing:vision and challenges[J]. IEEE Internet of Things Journal, 2016,3(5): 637-646. |
[29] | YANG T J , HOWARD A , CHEN B ,et al. Netadapt: platform-aware neural network adaptation for mobile applications[C]// Proceedings of the European Conference on Computer Vision (ECCV). Piscataway: IEEE Press, 2018: 285-300. |
[30] | TEERAPITTAYANON S , MCDANEL B , KUNG H T . Distri buted deep neural networks over the cloud,the edge and end devices[C]// Proceedings of 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). Piscataway: IEEE Press, 2017: 328-339. |
[31] | BONOMI F , MILITO R , ZHU J ,et al. Fog computing and its role in the internet of things[C]// Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing. Piscataway: IEEE Press, 2012: 13-16. |
[32] | SATYANARAYANAN M , BAHL P , CACERES R ,et al. The case for VM-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009,8(4): 14-23. |
[33] | WANG X , HAN Y , LEUNG V C M ,et al. Convergence of edge computing and deep learning: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020,22(2): 869-904. |
[34] | JEONG H J , LEE H J , SHIN C H ,et al. IONN: incremental offloading of neural network computations from mobile devices to edge servers[C]// Proceedings of the ACM Symposium on Cloud Computing. Piscataway: IEEE Press, 2018: 401-411. |
[35] | JEONG H J , LEE H J , SHIN K Y ,et al. PerDNN: offloading deep neural network computations to pervasive edge servers[C]// Proceedings of 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). Piscataway:IEEE Press, 2020: 1055-1066. |
[36] | LI G , LIU L , WANG X ,et al. Auto-tuning neural network quantization framework for collaborative inference between the cloud and edge[C]// Proceedings of International Conference on Artificial Neural Networks. Heidelberg:Springer, 2018: 402-411. |
[37] | WU J , LENG C , WANG Y ,et al. Quantized convolutional neural networks for mobile devices[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 4820-4828. |
[38] | TIAN X , ZHU J , XU T ,et al. Mobility-included DNN partition offloading from mobile devices to edge clouds[J]. Sensors, 2021,21(1): 229. |
[39] | BOYKOV Y , KOLMOGOROV V . An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Computer Vision Intelligence, 2004,26(9): 1124-1137. |
[40] | ZHAO Z , BARIJOUGH K M , GERSTLAUER A . Deepthings:distributed adaptive deep learning inference on resource-constrained IoT edge clusters[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018,37(11): 2348-2359. |
[41] | HUANG Y , ZHU Y , FAN X ,et al. Task scheduling with optimized transmission time in collaborative cloud-edge learning[C]// Proceedings of 2018 27th International Conference on Computer Communication and Networks (ICCCN). Piscataway:IEEE Press, 2018: 1-9. |
[42] | KO J H , NA T , AMIR M F ,et al. Edge-host partitioning of deep neural networks with feature space encoding for resource-constrained internet-of-things platforms[C]// Proceedings of 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2018: 1-6. |
[43] | XU S , ZHANG Z , KADOCH M ,et al. A collaborative cloud-edge computing framework in distributed neural network[J]. EURASIP Journal on Wireless Communications and Networking, 2020,2020(1): 1-17. |
[44] | WANG W , LAI Q , FU H ,et al. Salient object detection in the deep learning era:an in-depth survey[J]. IEEE Transactions on Pattern Analysis and Computer vision Intelligence, 2021. |
[45] | WANG X , GIRSHICK R , GUPTA A ,et al. Non-local neural networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 7794-7803. |
[46] | 朱应钊, 李嫚 . 元学习研究综述[J]. 电信科学, 2021,37(1): 22-31. |
ZHU Y Z , LI M . Review on meta-learning[J]. Telecommunications Science, 2021,37(1): 22-31. |
[1] | 卢敏, 胡娟, 张先超, 丁伟健, 乐光学. 基于用户多特征融合的个性化推荐模型[J]. 电信科学, 2023, 39(5): 101-115. |
[2] | 王淑玲, 孙杰, 王鹏, 杨爱东. 云边协同中的资源调度优化[J]. 电信科学, 2023, 39(2): 163-170. |
[3] | 王文哲, 安岗, 吴健, 赵文东, 王延刚, 赵云峰, 狄子翔, 顾照杰, 邹贵祥. 一种支持云原生的工业互联网业务管理平台[J]. 电信科学, 2022, 38(Z1): 203-213. |
[4] | 诸葛斌, 尹正虎, 斯文学, 颜蕾, 董黎刚, 蒋献. 基于学生知识追踪的多指标习题推荐算法[J]. 电信科学, 2022, 38(9): 129-143. |
[5] | 周杰, Esono Mikue Bernardo Esono, 王学英, 周惠婷, 罗宏. 基于SLM-PTS算法融合的NC-OFDM峰均比优化[J]. 电信科学, 2022, 38(7): 63-74. |
[6] | 李攀攀, 谢正霞, 乐光学, 刘鑫. 基于深度学习的无线通信接收方法研究进展与趋势[J]. 电信科学, 2022, 38(2): 1-17. |
[7] | 申情, 郭文宾, 楼俊钢, 余强国. 考虑多层次潜在特征的个性化推荐模型[J]. 电信科学, 2022, 38(2): 71-83. |
[8] | 陈志宏, 王明晓. 计算机视觉在智慧安防中的应用[J]. 电信科学, 2021, 37(8): 142-147. |
[9] | 陈瑞凤, 李君, 徐春婕, 程清波, 吕晓军. 5G在铁路智能车站中的应用[J]. 电信科学, 2021, 37(7): 86-95. |
[10] | 孙姝君, 彭盛亮, 姚育东, 杨喜. 基于深度学习的调制识别综述[J]. 电信科学, 2021, 37(5): 82-90. |
[11] | 彭双, 王晓东, 彭宗举, 陈芬. 基于深度学习的快速QTMT划分[J]. 电信科学, 2021, 37(4): 73-81. |
[12] | 胡道允, 齐进, 陆钱春, 李锋, 房红强. 基于深度学习的流量工程算法研究与应用[J]. 电信科学, 2021, 37(2): 107-114. |
[13] | 武宇亭, 王旭亮, 全硕. KubeTelecom:一种面向5G网络切片的多云多容器集群管理与运维引擎[J]. 电信科学, 2021, 37(12): 72-83. |
[14] | 张捷, 杨丽花, 王增浩, 呼博, 聂倩. 一种新型的基于深度学习的时变信道预测方法[J]. 电信科学, 2021, 37(1): 39-47. |
[15] | 李远宁,宁柏锋,董召杰. 电网机巡图像分析框架与深度学习方法[J]. 电信科学, 2020, 36(8): 167-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|