电信科学 ›› 2022, Vol. 38 ›› Issue (9): 18-35.doi: 10.11959/j.issn.1000-0801.2022069
伏玉笋1,2,3, 唐金辉1
修回日期:
2022-04-13
出版日期:
2022-09-20
发布日期:
2022-09-01
作者简介:
伏玉笋(1972- ),男,博士,上海交通大学助理研究员,主要研究方向为无线通信与系统、无线网联智能系统、工业互联网与安全、智能制造等基金资助:
Yusun FU1,2,3, Jinhui TANG1
Revised:
2022-04-13
Online:
2022-09-20
Published:
2022-09-01
Supported by:
摘要:
5G系统将移动通信服务从移动电话、移动宽带和大规模机器通信扩展到新的应用领域,即所谓对通信服务有特殊要求的垂直领域。对使能未来工厂的5G能力进行了全面的分析总结,包括弹性网络架构、灵活频谱、超可靠低时延通信、时间敏感网络、安全和定位,而弹性网络架构又包括对网络切片、非公共网络、5G局域网和边缘计算的支持。希望从广度到深度,对相关的理论及技术应用做透彻、全面的梳理,对其挑战做清晰的总结,从而为相关研究和工程技术人员提供借鉴。
中图分类号:
伏玉笋, 唐金辉. 使能未来工厂的5G能力综述[J]. 电信科学, 2022, 38(9): 18-35.
Yusun FU, Jinhui TANG. A survey on 5G capabilities enabling the factories of the future[J]. Telecommunications Science, 2022, 38(9): 18-35.
表2
典型工业自动化用例和性能需求[13,18,19]"
通信需求 | ||||||||
用例 | 链路需求 | |||||||
时间关键型或循环 | 非关键型 | |||||||
循环时间/ms | 有效载荷 | 抖动 | 时延 | 速率 | 抖动 | |||
运动控制 | 印刷机 | <2 | 20 byte | <1 μs | — | >1 Mbit/s | — | |
机床 | <0.5 | 50 byte | <1 μs | — | >1 Mbit/s | — | ||
包装机 | <1 | 40 byte | <1 μs | >1 Mbit/s | — | |||
控制到控制通信 | 控制器间通信 | 4~10 | <1 KB | <1 μs | <10 ms | 5~10 Mbit/s | — | |
过程自动化 | 闭环控制 | 10~100 | 几字节 | 1~10 ms | — | — | — | |
过程监控 | 50 | — | — | — | — | — | ||
工厂资产管理 | 50 | — | — | — | — | — | ||
移动机器人 | 精准协同机器人 | 1 | 40~250 byte | <50%的循环 | — | >10 Mbit/s | — | |
机床 | 1~10 | 时间 | ||||||
协同驾驶 | 10~50 | |||||||
视频控制 | 10~100 | 15~150 KB | ||||||
标准机器人操作与业务管理 | 40~500 | 40~250 byte | ||||||
以人为中心的监控 | 安全控制面板 | 4~8 | 40~250 byte | 2~4 ms | <30 ms | >5 Mbit/s | <15 ms | |
增强现实 | <10 | 20~50 Mbit/s | — | — | — |
表3
TSN的关键技术点"
TSN组件 | 技术 | IETF标准 |
同步 | 定时同步 | 802.1AS |
(时间同步) | IEEE 1588(P802.1AS-Rev) | |
可靠性 | 帧复制和消除 | 802.1CB |
(高可用/超可靠) | 路径控制 | 802.1Qca |
每流过滤和策略 | 802.1Qci | |
时间同步可靠性 | P802.1AS-Rev | |
时延 | 基于信用的整形器 | 802.1Qav |
(有界低时延) | 帧抢占 | 802.3br & 802.1Qbu |
计划业务量 | 802.1Qbv | |
循环排队和转发 | 802.1Qch | |
异步流量整形 | P802.1Qcr | |
QoS规定 | P802.1DC | |
资源管理 | 流预留协议 | 802.1Qat |
(专用资源和应用接口) | TSN配置 | 802.1Qcc |
基本YANG模型 | 802.1Qcp | |
连接故障管理YANG模型 | P802.1Qcx | |
链路层发现YANG模型 | P802.1ABcu | |
用于Qbv、Qbu、Qci的YANG模型 | P802.1Qcw | |
用于FRER的YANG模型和MIB | P802.1CBcv | |
链路本地注册协议 | P802.1CS | |
资源分配协议 | P802.1Qdd | |
扩展流标识 | P802.1CBdb |
表5
定位性能需求[12]"
场景 | 水平精度 | 垂直精度 | 可用性 | 头向 | 定位时延 | UE移动速度 |
带安全功能的移动控制面板(非危险区) | < 5 m | < 3 m | 90 % | 不涉及 | < 5 s | 不涉及 |
过程自动化—工厂资产管理 | < 1 m | < 3 m | 90 % | 不涉及 | < 2 s | < 30 km/h |
智能工厂中的灵活、模块化装配区(用于在工作场所工具跟踪) | < 1 m (相对定位) | 不涉及 | 99 % | 不涉及 | 1s | < 30 km/h |
智能工厂中的增强现实 | < 1 m | < 3 m | 99 % | < 0.17 rad | < 15 ms | < 10 km/h |
带安全功能的移动控制面板(在工厂危险区) | < 1 m | < 3 m | 99.9 % | < 0.54 rad | < 1 s | 不涉及 |
智能工厂中的灵活、模块化装配区(用于自动驾驶车辆,仅用于监控目的) | < 50 cm | < 3 m | 99 % | 不涉及 | 1s | < 30 km/h |
制造的入内物流(用于室内自动驾驶系统的驾驶轨迹(如果有更多传感器,如摄像机、GNSS、IMU等支持)) | < 30 cm (如果有摄像机、GNSS、IMU 等其他传感器支持) | < 3 m | 99.9 % | 不涉及 | 10 ms | < 30 km/h |
制造的入内物流(货物储存) | < 20 cm | < 20 cm | 99 % | 不涉及 | < 1 s | < 30 km/h |
表6
5G接入支持的标准定位方式"
方法 | 基于UE | UE辅助,基于LMF | 5G RAN辅助 | SUPL |
A-GNSS | √ | √ | √(基于UE和UE辅助) | |
OTDOA | √ | √(UE辅助) | ||
E-CID | √ | √ | √(UE辅助) | |
Sensor | √ | √ | ||
WLAN | √ | √ | √ | |
Bluetooth | √ | |||
TBS | √ | √ | √(MBS) | |
DL-TDOA | √ | √ | √ | |
DL-AoD | √ | √ | √ | |
Multi-RTT | √ | √ | √ | |
5G E-CID | √ | √ | √(DL NR E-CID) | |
UL-TDOA | √ | √ | ||
UL-AoA | √ | √ | ||
注:A-GNSS(assisted-global navigation satellite system):辅助全球导航卫星系统;OTDOA(observed time difference of arrival):观察到达时间差;E-CID(enhanced cell-ID positioning method) :增强小区标识定位;TBS(terrestrial beacon system):地面信标系统;LMF(location management function):定位管理功能;SUPL(secure user plane location):安全用户面定位;MBS (metropolitan beacon system):都市信标系统;DL-TDOA(downlink time difference of arrival):下行到达时间差;DL-AoD (downlink angle-of-departure):下行离开角;NR E-CID(NR enhanced cell-ID):5G增强小区标识定位;UL-TDOA(uplink time difference of arrival):上行到达时间差;UL-AoA(uplink angle of arrival):上行到达角。 |
[1] | HENNING K . Recommendations for implementing the strategic initiative INDUSTRIE 4.0[R]. 2013. |
[2] | WOLLSCHLAEGER M , SAUTER T , JASPERNEITE J . The future of industrial communication:automation networks in the era of the Internet of Things and industry 4.0[J]. IEEE Industrial Electronics Magazine, 2017,11(1): 17-27. |
[3] | RAO S K , PRASAD R . Impact of 5G technologies on industry 4.0[J]. Wireless Personal Communications, 2018,100(1): 145-159. |
[4] | 边缘计算产业联盟,工业互联网产业联盟,网络5.0产业和技术创新联盟. 5G时代工业互联网边缘计算网络白皮书[R]. 2020. |
ECC,AII AIA,N5A. White paper on industrial Internet and edge computing network in 5G era[R]. 2020. | |
[5] | IEC 61158. Industrial communication networks-fieldbus specification[S]. 2014. |
[6] | IEC 61784. Industrial communication networks - profiles[S]. 2014. |
[7] | 施耐德电气,华为技术有限公司. 5G 和 5G 演进:工业控制应用场景白皮书[R]. 2021. |
Schneider Electric,Huawei Technologies Co.,Ltd. 5G and 5G evolution:white paper on industrial control application scena-rios[R]. 2021. | |
[8] | 5G ACIA. 5G for Connected industries and automation[R]. 2018. |
[9] | 张泉灵, 洪艳萍 . 智能工厂综述[J]. 自动化仪表, 2018,39(8): 1-5. |
ZHANG Q L , HONG Y P . Intelligent plant review[J]. Process Automation Instrumentation, 2018,39(8): 1-5. | |
[10] | Ericsson. Critical capabilities for private 5G networks[R]. 2019. |
[11] | 工业互联网产业联盟. 工业互联网体系架构[R]. 2020. |
Alliance of Industrial Internet. Industrial internet architecture[R]. 2020. | |
[12] | 3GPP. Service requirements for cyber-physical control applications in vertical domains:TS 22.104[S]. 2020. |
[13] | 3GPP. Study on communication for automation in vertical domains:TR 22.804[S]. 2020. |
[14] | BANCHS A , GUTIERREZ-ESTEVEZ D M ,, FUENTES M ,et al. A 5G mobile network architecture to support vertical industries[J]. IEEE Communications Magazine, 2019,57(12): 38-44. |
[15] | 5G PPP. 5G and the factories of the future[R]. 2015. |
[16] | GHOSH A , MAEDER A , BAKER M ,et al. 5G evolution:a view on 5G cellular technology beyond 3GPP release 15[J]. IEEE Access, 2019(7): 127639-127651. |
[17] | 确定性网络产业联盟. 5G确定性网络+工业互联网融合白皮书[R]. 2020. |
5G DNA. 5G deterministic network and industrial Internet convergence white paper[R]. 2020. | |
[18] | 3GPP. Service requirements for the 5G system:TS 22.261[S]. 2020. |
[19] | GANGAKHEDKAR S , CAO H W , ALI A R ,et al. Use cases,requirements and challenges of 5G communication for industrial automation[C]// Proceedings of 2018 IEEE International Conference on Communications Workshops. Piscataway:IEEE Press, 2018: 1-6. |
[20] | 3GPP. System architecture for the 5G system:TS 23.501[S]. 2020. |
[21] | Samsung. 5G core vision[R]. 2019. |
[22] | 3GPP. Study on enhancement of 5G system (5GS) for vertical and local area network (LAN) services:TR 23.734[S]. 2019. |
[23] | 5G-MoNArch. 5G architecture and slicing for customized networks[R]. 2019. |
[24] | WIJETHILAKA S , LIYANAGE M . Survey on network slicing for internet of things realization in 5G networks[J]. IEEE Communications Surveys & Tutorials, 2021,23(2): 957-994. |
[25] | ZHANG S L . An overview of network slicing for 5G[J]. IEEE Wireless Communications, 2019,26(3): 111-117. |
[26] | AFOLABI I , TALEB T , SAMDANIS K ,et al. Network slicing and softwarization:a survey onprinciples,enabling technologies and solutions[J]. IEEE Communications Surveys & Tutorials, 2018,20(3): 2429-2453. |
[27] | LUONG N C , WANG P , NIYATO D ,et al. Resource man-agement in cloud networking usingeconomic analysis and pric-ing models:a survey[J]. IEEE Communications Surveys & Tu-torials, 2017,19(2): 954-1001. |
[28] | ZHANG Y , LEE C , NIYATO D ,et al. Auction approaches for resource allocation inwireless systems:a survey[J]. IEEE Communications Surveys & Tutorials, 2013,15(3): 1020-1041. |
[29] | SU R Y , ZHANG D Y , VENKATESAN R ,et al. Resource allocation for network slicing in 5G telecommunication networks:a survey of principles and models[J]. IEEE Network, 2019,33(6): 172-179. |
[30] | CABALLERO P , BANCHS A , DE VECIANA G ,et al. Network slicing games:enabling customization in multi-tenant networks[J]. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, 2017: 1-9. |
[31] | LIANG L , WU Y F , FENG G ,et al. Online auction-based resource allocation for service-oriented network slicing[J]. IEEE Transactions on Vehicular Technology, 2019,68(8): 8063-8074. |
[32] | 伏玉笋 . 移动通信网络评价准则与解决方案[J]. 电信科学, 2020,36(11): 28-38. |
FU Y S . Evaluation criteria and solution of mobile communica-tion network[J]. Telecommunications Science, 2020,36(11): 28-38. | |
[33] | SATTAR D , MATRAWY A . Optimal slice allocation in 5G core networks[J]. IEEE Networking Letters, 2019,1(2): 48-51. |
[34] | TALEB T , AFOLABI I , BAGAA M . Orchestrating 5G network slices to support industrial internet and to shape next-generation smart factories[J]. IEEE Network, 2019,33(4): 146-154. |
[35] | ORDONEZ-LUCENA J , CHAVARRIA J F , CONTRERAS L M ,et al. The use of 5G Non-Public Networks to support Industry 4.0 scenarios[C]// Proceedings of 2019 IEEE Conference on Standards for Communications and Networking. Piscataway:IEEE Press, 2019: 1-7. |
[36] | STRINATI E C , HAUSTEIN T , MAMAN M ,et al. Beyond 5G private networks:the 5G CONNI perspective[C]// Proceedings of 2020 IEEE Globecom Workshops (GC Wkshps. Piscataway:IEEE Press, 2020: 1-6. |
[37] | 5G ACIA. 5G non-public networks for industrial scenarios[R]. 2019. |
[38] | ROSTAMI A , . Private 5G networks for vertical industries:deployment and operation models[C]// Proceedings of 2019 IEEE 2nd 5G World Forum (5GWF). Piscataway:IEEE Press, 2019: 433-439. |
[39] | 欧阳晔, 王立磊, 杨爱东 ,等. 通信人工智能的下一个十年[J]. 电信科学, 2021 37(3): 1-36. |
OUYANG Y , WANG L L , YANG A D ,et al. Next decade of telecommunications artificial intelligence[J]. Telecommunica-tions Science, 2021 37(3): 1-36. | |
[40] | 3GPP. Feasibility study on LAN support in 5G:TR 22.821[S]. 2018. |
[41] | ETSI. Mobile-edge computing (MEC); Service scenarios[R]. 2015. |
[42] | ETSI. MEC in 5G networks[R]. 2018. |
[43] | 3GPP. Architecture for enabling edge applications:TS 23.558[S]. 2020. |
[44] | CHOI Y , PARK N . Support for edge computing in the 5G network[C]// Proceedings of 2018Tenth International Conference on Ubiquitous and Future Networks (ICUFN). Piscataway:IEEE Press, 2018: 592-596. |
[45] | SPINELLI F , MANCUSO V . Toward enabled industrial verticals in 5G:a survey on MEC-based approaches to provisioning and flexibility[J]. IEEE Communications Surveys & Tutorials, 2021,23(1): 596-630. |
[46] | CHEN B T , WAN J F , CELESTI A ,et al. Edge computing in IoT-based manufacturing[J]. IEEE Communications Magazine, 2018,56(9): 103-109. |
[47] | LIU Y Q , PENG M G , SHOU G C ,et al. Toward edge intelligence:multiaccess edge computing for 5G and internet of things[J]. IEEE Internet of Things Journal, 2020,7(8): 6722-6747. |
[48] | YEO J , KIM T , OH J ,et al. Advanced data transmission framework for 5G wireless communications in the 3GPP new radio standard[J]. IEEE Communications Standards Magazine, 2019,3(3): 38-43. |
[49] | 3GPP. On bandwidth parts and “RF” requirements:R1-1711795[S]. 2017. |
[50] | JEON J . NR wide bandwidth operations[J]. IEEE Communications Magazine, 2018,56(3): 42-46. |
[51] | ABINADER F , MARCANO A , SCHOBER K ,et al. Impact of bandwidth part (BWP) switching on 5G NR system performance[C]// Proceedings of 2019IEEE 2nd 5G World Forum (5GWF). Piscataway:IEEE Press, 2019: 161-166. |
[52] | 伏玉笋, 杨根科 . 无线超可靠低时延通信:关键设计分析与挑战[J]. 通信学报, 2020,41(8): 187-203. |
FU Y S , YANG G K . Wireless ultra-reliable and low-latency communication:key design analysis and challenge[J]. Journal on Communications, 2020,41(8): 187-203. | |
[53] | Nokia Bell Labs. Ultra reliable low latency communication for 5G new radio[R]. 2018. |
[54] | Nokia Bell Labs. Wireless for verticals[R]. 2017. |
[55] | SCHULZ P , MATTHE M , KLESSIG H ,et al. Latency critical IoT applications in 5G:perspective on the design of radio interface and network architecture[J]. IEEE Communications Magazine, 2017,55(2): 70-78. |
[56] | POPOVSKI P , STEFANOVIC C , NIELSEN J J ,et al. Wireless accessin ultra-reliable low-latency communication (URLLC)[J]. IEEE Transactions on Communications, 2019,67(8): 5783-5801. |
[57] | Ericsson. 5G Techniques for ultra reliable low latency communication[R]. 2017. |
[58] | 3GPP. Feasibility Study on new services and markets technology enablers for critical communications:TR 22.862[S]. 2016. |
[59] | 3GPP. Study on physical layer enhancements for NR ultra-reliable and low latency case (URLLC):TR38.824[S]. 2019. |
[60] | 3GPP. Study on NR industrial internet of things (IoT):TR38.825[S]. 2019. |
[61] | 3GPP. Study on enhancement of ultra-reliable low-latency communication (URLLC) support in the 5G core network (5GC):TR 23.725[S]. 2019. |
[62] | DURISI G , KOCH T , POPOVSKI P . Toward massive,ultrareliable,and low-latency wireless communication with short packets[J]. Proceedings of the IEEE, 2016,104(9): 1711-1726. |
[63] | KIM K S , KIM D K , CHAE C B ,et al. Ultrareliable and low-latency communication techniques for tactile internet services[J]. Proceedings of the IEEE, 2019,107(2): 376-393. |
[64] | 3GPP. On URLLC design principles:R1-167061[S]. 2016. |
[65] | RAO J , VRZIC S . Packet duplication for URLLC in 5G dual connectivity architecture[C]// Proceedings of 2018 IEEE Wire-less Communications and Networking Conference. Piscataway:IEEE Press, 2018: 1-6. |
[66] | 3GPP. Multi-connectivity:TR 37.340[S]. 2019. |
[67] | AIJAZ A . Packet duplication in dual connectivity enabled 5G wireless networks:overview and challenges[J]. IEEE Communications Standards Magazine. 2019,3(3): 20-28. |
[68] | RAO J , VRZIC S . Packet duplication for URLLC in 5G:architectural enhancements and performance analysis[J]. IEEE Network, 2018,32(2): 32-40. |
[69] | KHOSHNEVISAN M , JOSEPH V , GUPTA P ,et al. 5G Industrial networks with CoMP for URLLC and time sensitive network architecture[J]. IEEE Journal on Selected Areas in Communications, 2019,37(4): 947-959. |
[70] | NIELSEN J J , LIU R , POPOVSKI P . Ultra-reliable low latency communication using interface diversity[J]. IEEE Transactions on Communications, 2018,66(3): 1322-1334. |
[71] | Ericsson. IEEE 802.1 TSN -an introduction[R]. 2019. |
[72] | MESSENGER J L . Time-sensitive networking:an introduction[J]. IEEE Communications Standards Magazine, 2018,2(2): 29-33. |
[73] | Ericsson. 5G-TSN integration for industrial automation[R]. Ericsson Technology Review. 2019. |
[74] | 蔡岳平, 姚宗辰, 李天驰 . 时间敏感网络标准与研究综述[J]. 计算机学报, 2021,44(7): 1378-1397. |
CAI Y P , YAO Z C , LI T C . A survey on time-sensitive net-working:standards and state-of-the-art[J]. Chinese Journal of Computers, 2021,44(7): 1378-1397. | |
[75] | 邱雪松, 黄徐川, 李文萃 ,等. 面向大规模时间敏感网络的分组调度机制[J]. 通信学报, 2020,41(11): 124-131. |
QIU X S , HUANG X C , LI W C ,et al. Group-scheduling me-chanism for large-scaletime-sensitive network[J]. Journal on Communications, 2020,41(11): 124-131. | |
[76] | 李红艳, 张焘, 张靖乾 ,等. 基于时变图的天地一体化网络时间确定性路由算法与协议[J]. 通信学报, 2020,41(10): 116-129. |
LI H Y , ZHANG T , ZHANG J Q ,et al. Time deterministic routing algorithm and protocol based ontime-varying graph over the space-ground integrated network[J]. Journal on Communi-cations, 2020,41(10): 116-129. | |
[77] | 胡致远, 胡文前, 李香 ,等. 面向业务可达性的广域工业互联网调度算法研究[J]. 电子与信息学报, 2021,43(9): 2608-2616. |
HU Z Y , HU W Q , LI X ,et al. Research on wide area industrial internet scheduling algorithmbased on service reachability[J]. Journal of Electronics & Information Technology, 2021,43(9): 2608-2616. | |
[78] | DAI X T , ZHAO S , JIANG Y ,et al. Fixed-priority scheduling and controller co-design for time-sensitive networks[C]// Proceedings of the 39th International Conference on Computer-Aided Design. New York:ACM Press, 2020: 1-9. |
[79] | 王敬超, 高先明, 黄玉栋 ,等. 时间敏感网络的控制架构[J]. 北京邮电大学学报, 2021,44(2): 95-101. |
WANG J C , GAO X M , HUANG Y D ,et al. Research of con-trol framework in time-sensitive network[J]. Journal of Beijing University of Posts and Telecommunications, 2021,44(2): 95-101. | |
[80] | BOEHM M , OHMS J , KUMAR M ,et al. Time-sensitive software-defined networking:a unified control- plane for TSN and SDN[C]// Mobile Communication - Technologies and Applications; 24.ITG-Symposium. Piscataway:IEEE Press, 2019: 1-9. |
[81] | RUDOLPH H C , KUNZ A , IACONO L L ,et al. Security challenges of the 3GPP 5G service based architecture[J]. IEEE Communications Standards Magazine, 2019,3(1): 60-65. |
[82] | 5G ACIA. Security aspects of 5G for industrial networks[R]. 2020. |
[83] | 3GPP. Security architecture and procedures for 5G system:TS 33.501[S]. 2020. |
[84] | 3GPP. 3GPP System architecture evolution (SAE); Security architecture:TS 33.401[S]. 2019. |
[85] | 3GPP. Authentication and key management for applications (AKMA) based on 3GPP credentials in the 5G System (5GS):TS 33.535[S]. 2020. |
[86] | 3GPP. Study on the security of ultra-reliable low-latency communication (URLLC) for the 5G system (5GS):TR 33.825[S]. 2019. |
[87] | 3GPP. Study on security enhancements of 5G system (5GS) for vertical and local area network (LAN) services:TR 33.819[S]. 2019. |
[88] | 3GPP. Study on security aspects of 5G network slicing management:TR 33.811[S]. 2018. |
[89] | 3GPP. Security aspects of common API framework (CAPIF) for 3GPP northbound APIs:TS 33.122[S]. 2019. |
[90] | Ericsson. Security standards and their role in 5G[R]. 2020. |
[91] | AHMAD I , SHAHABUDDIN S , KUMAR T ,et al. Security for 5G and beyond[J]. IEEE Communications Surveys & Tutorials, 2019,21(4): 3682-3722. |
[92] | CAO J , MA M D , LI H ,et al. A survey on security aspects for 3GPP 5G networks[J]. IEEE Communications Surveys & Tutorials, 2020,22(1): 170-195. |
[93] | YOSHIZAWA T , BASKARAN S B M , KUNZ A . Overview of 5G URLLC system and security aspects in 3GPP[C]// Proceedings of 2019IEEE Conference on Standards for Communications and Networking (CSCN). Piscataway:IEEE Press, 2019: 1-5. |
[94] | Ericsson. A guide to 5G network security 2.0[R]. 2021. |
[95] | 杨志强, 粟栗, 齐旻鹏 ,等. 5G安全技术与标准[J]. 电信科学, 2020,36(12): 1-19. |
YANG Z Q , SU L , QI M P ,et al. Overview and prospect of 5G security[J]. Telecommunications Science, 2020,36(12): 1-19. | |
[96] | KHAN M , GINZBOORG P , NIEMI V . AKMA:delegated authentication system of 5G[J]. IEEE Communications Standards Magazine, 2021,5(3): 56-61. |
[97] | SETHI M , AURA T.Secure network access authentication for IoT devices:EAP framework vs . individual protocols[J]. IEEE Communications Standards Magazine, 2021,5(3): 34-39. |
[98] | 3GPP. Study on positioning use cases:TS 22.872[S]. 2018. |
[99] | DEL PERAL-ROSADO J A , RAULEFS R , LóPEZ- SALCEDO J A , ,et al. Survey of cellular mobile radio localization methods:from 1G to 5G[J]. IEEE Communications Surveys &Tutorials, 2018,20(2): 1124-1148. |
[100] | LIN X Q , BERGMAN J , GUNNARSSON F ,et al. Positioning for the internet of things:a 3GPP perspective[J]. IEEE Communications Magazine, 2017,55(12): 179-185. |
[101] | Ericsson. Positioning with LTE[R]. 2011. |
[102] | 3GPP. Study on local NR positioning in NG-RAN:TS 38.856[S]. 2019. |
[103] | 3GPP. Study on NR positioning enhancements:TS 38.857[S]. 2020. |
[104] | 3GPP. Study on location enhancements for mission critical services:TR 23.744[S]. 2020. |
[105] | 3GPP. User Equipment (UE) positioning in NG-RAN:TS 38.305[S]. 2019. |
[106] | 3GPP. Study on NR positioning support:TR 38.855[S]. 2019. |
[107] | GUO X S , ANSARI N , HU F Z ,et al. A survey on fusion-based indoor positioning[J]. IEEE Communications Surveys & Tutorials, 2019,22(1): 566-594. |
[108] | CHALOUPKA Z . Technology and standardization gaps for high accuracy positioning in 5G[J]. IEEE Communications Standards Magazine, 2017,1(1): 59-65. |
[109] | Qualcomm. OTDOA positioning in 3GPP LTE[R]. 2014. |
[110] | ZHANG P , LU J , WANG Y ,et al. Cooperative localization in 5G networks:a survey[J]. ICT Express, 2017,3(1): 27-32. |
[111] | 中通服中睿科技有限公司. 5G 垂直行业专网设计及部署白皮书[R]. 2021. |
China Comservice Zhongrui Technology Co.,Ltd. 5G vertical indus-try private network design and deployment white paper[R]. 2021. | |
[112] | 5G应用产业方阵. 5G行业虚拟专网网络架构白皮书[R]. 2020. |
5G AIA. 5G industry virtual private network architecture white paper[R]. 2020. | |
[113] | 工业互联网产业联盟(AII). 工业互联网安全框架[R]. 2018. |
AII. Industrial internet security framework[R]. 2018. |
[1] | 周胜利, 蒋可怡, 徐博, 徐睿, 张熙康, 赵泉喆, 徐阳东. 面向电信网络诈骗治理的网络安全课程构建效能评估研究[J]. 电信科学, 2023, 39(6): 122-128. |
[2] | 张辰, 王红凯, 毛冬, 潘司晨, 赵帅. 面向电力终端的轻量化5G硬加密通信模组研究及应用[J]. 电信科学, 2023, 39(6): 159-169. |
[3] | 刘思聪, 苏丹萍, 卫天阔, 王先耀. 基于多节点协作的鲁棒可见光智能定位[J]. 电信科学, 2023, 39(5): 28-41. |
[4] | 王玮, 王建萍, 冯莉芳, 金建力. 基于可见光的通信定位一体化技术研究[J]. 电信科学, 2023, 39(5): 57-66. |
[5] | 赵亚飞, 闫冰, 孙耀华, 彭木根. 低轨星座通导一体化:现状、机遇和挑战[J]. 电信科学, 2023, 39(5): 90-100. |
[6] | 刘建国, 渠灏, 黄红明, 朱智丹. IPv6+智能骨干网络技术研究[J]. 电信科学, 2023, 39(5): 155-166. |
[7] | 张乐, 马洪源. 运营商网络边缘云安全实践[J]. 电信科学, 2023, 39(4): 165-172. |
[8] | 陈滏媛, 董振江, 董建阔, 徐敏杰. 车联网安全防护技术综述[J]. 电信科学, 2023, 39(3): 1-15. |
[9] | 沈静洁, 李光球, 罗延翠, 刘会芝. 过时CSI下全双工中继辅助D2D网络的物理层安全[J]. 电信科学, 2023, 39(3): 89-99. |
[10] | 王淑玲, 孙杰, 王鹏, 杨爱东. 云边协同中的资源调度优化[J]. 电信科学, 2023, 39(2): 163-170. |
[11] | 康宇, 刘雅琼, 赵彤雨, 寿国础. AI算法在车联网通信与计算中的应用综述[J]. 电信科学, 2023, 39(1): 1-19. |
[12] | 张海龙, 李博, 贾娜娟. 基于Dijkstra算法的电力光通信网络智能运维设备脱网故障区段定位方法[J]. 电信科学, 2023, 39(1): 92-99. |
[13] | 王帅, 陈丹, 肖羽. 5G行业专网对外服务能力研究[J]. 电信科学, 2022, 38(Z1): 143-148. |
[14] | 沈鸿, 崔凌, 张天魁. 面向智能制造的5G网络部署方案研究[J]. 电信科学, 2022, 38(Z1): 158-163. |
[15] | 顾博, 敖婷. 基于MEC的定位技术在车联网中的应用[J]. 电信科学, 2022, 38(Z1): 250-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|