[1] |
RADTKE J , KEBSCHULL C , STOLL E . Interactions of the space debris environment with mega constellations—Using the example of the OneWeb constellation[J]. Acta Astronautica, 2017(131): 55-68.
|
[2] |
DELPORTILLO I , CAMERON B G , CRAWLEY E F . A technical comparison of three low earth orbit satellite constellation systems to provide global broadband[J]. Acta Astronautica, 2019(159): 123-135.
|
[3] |
PELTON J N , JACQUé B . Distributed internet- optimized services via satellite constellations,Handbook of Satellite Applications[M]. New York: Springer Press, 2017: 249-269.
|
[4] |
HANSON W A . Satellite internet in the mobile age[J]. New Space, 2016,4(3): 138-152.
|
[5] |
吴巍 . 天地一体化信息网络发展综述[J]. 天地一体化信息网络, 2020,1(1): 1-16.
|
|
WU W . Survey on the development of space-integrated-ground information network[J]. Space-Integrated-Ground Information Networks, 2020,1(1): 1-16.
|
[6] |
SHARMA S K , CHATZINOTAS S , OTTERSTEN B . In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites[J]. International Journal of Satellite Communications and Networking, 2016,34(1): 11-39.
|
[7] |
POURMOGHADAS A , SHARMA S K , CHATZINOTAS S ,et al. On the spectral coexistence of GSO and NGSO FSS systems:power control mechanisms and a methodology for inter-site distance determination[J]. International Journal of Satellite Communications and Networking, 2017,35(5): 443-459.
|
[8] |
王闯, 胡婧, 李永强 ,等. 空间信息网络中面向双卫星的频谱共享方法[J]. 航空学报, 2019,40(9): 252-264.
|
|
WANG C , HU J , LI Y Q ,et al. Spectrum sharing method for dual satellite in space information network[J]. Acta Aeronautica et Astronautica Sinica, 2019,40(9): 252-264.
|
[9] |
王悦, 王权, 袁丽 ,等. GEO及NGSO卫星通信系统融合应用研究[J]. 航天器工程, 2020,29(4): 11-18.
|
|
WANG Y , WANG Q , YUAN L ,et al. Research on fusion application of GEO and NGSO satellite communication system[J]. Spacecraft Engineering, 2020,29(4): 11-18.
|
[10] |
张泓湜, 蒋伯峰 . 基于空间隔离的低轨卫星系统频谱共享方法[J]. 北京航空航天大学学报, 2018,44(9): 1909-1917.
|
|
ZHANG H S , JIANG B F . Spatial isolation methodology for spectral coexistence in LEO satellite systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018,44(9): 1909-1917.
|
[11] |
韩锐, 石会鹏, 李伟 ,等. 我国Ka频段卫星固定业务系统间干扰特性分析研究[J]. 电波科学学报, 2017,32(5): 619-625.
|
|
HAN R , SHI H P , LI W ,et al. Interference analysis of China's NGSO constellation system to GSO system with fixed-satellite service in Ka band[J]. Chinese Journal of Radio Science, 2017,32(5): 619-625.
|
[12] |
PARK C S , KANG C G , CHOI Y S ,et al. Interference analysis of geostationary satellite networks in the presence of moving nongeostationary satellites[C]// 2010 2nd International Conference on IEEE,Information Technology Convergence and Services (ITCS). Piscataway:IEEE Press, 2010: 1-5.
|
[13] |
WANG Y F , DING X J , ZHANG G X . A novel dynamic spectrum-sharing method for GEO and LEO satellite networks[J]. IEEE Access, 2020(8): 147895-147906.
|
[14] |
WANG C , BIAN D M , SHI S C ,et al. A novel cognitive satellite network with GEO and LEO broadband systems in the downlink case[J]. IEEE Access, 2018(6): 25987-26000.
|
[15] |
ITU-R. Maximum permissible levels of interference in a satellite network (GSO/FSS; non-GSO/FSS; non-GSO /MSS feeder links) in the fixed-satellite service caused by other codirectional FSS networks below 30 GHz:ITU-R S.1323-2[S]. 2002.
|
[16] |
ITU-R. Simulation methodologies for determining statistics of short-term interference between co-frequency,codirectional nongeostationary-satellite orbit fixed- satellite service systems in circular orbits and other non-geostationary fixed-satellite service systems in circular orbits or geostationary-satellite orbit fixedsatellite service networks:ITU-R S.1325-3[S]. 2003.
|
[17] |
ITU-R. Topography for Earth-to-space propagation modelling:ITU-R P.1511-2[S]. 2019.
|
[18] |
ITU-R. Reference radiation pattern of earth station antennas in the fixed-satellite service for use in coordination and interference assessment in the frequency range from 2 to 31 GHz:ITU-R S.465-6[S]. 2010.
|
[19] |
ITU-R. Apportionment of the allowable error performance degradations to fixed-satellite service (FSS) hypothetical reference digital paths arising from time invariant interference for systems operating below 30 GHz:ITU-R S.1432-1[S]. 2006.
|
[20] |
ITU-R. Satellite antenna radiation patterns for non-geostationary orbit satellite antennas operating in the fixed-satellite service below 30 GHz:ITU-R S.1528-0[S]. 2001.
|
[21] |
ITU-R. Satellite antenna radiation pattern for use as a design objective in the fixed-satellite service employing geostationary satellites:ITU-R S.672 4[S]. 1997.
|
[22] |
ITU-R. Radiation diagrams for use as design objectives for antennas of earth stations operating with geostationary satellites:ITU-R S.580-6[S]. 2004.
|
[23] |
CCSDS. TM synchronization and channel coding 2017 recommendation for space data system standards:CCSDS 131.0-B-3[S]. 2017.
|
[24] |
CCSDS. TC synchronization and channel coding 2017 recommendation for space data system standards:CCSDS 231.0-B-3[S]. 2017.
|