天地一体化信息网络 ›› 2021, Vol. 2 ›› Issue (2): 2-10.doi: 10.11959/j.issn.2096-8930.2021014
所属专题: 专题:空间组网与交换技术
• 专题:空间组网与交换技术 • 下一篇
吴昊1, 王帅2, 邓献策2, 刘沛龙3, 刘凯3, 晏坚3
修回日期:
2021-04-01
出版日期:
2021-06-20
发布日期:
2021-06-01
作者简介:
吴昊(1995-),清华大学电子工程系博士生,主要研究方向为软件定义网络、卫星通信基金资助:
Hao WU1, Shuai WANG2, Xiance DENG2, Peilong LIU3, Kai LIU3, Jian YAN3
Revised:
2021-04-01
Online:
2021-06-20
Published:
2021-06-01
Supported by:
摘要:
摘 要:针对天地一体化信息网络的建设需求,分别对星载信道化交换技术和分组交换技术的关键问题与研究现状进行分析。其中,信道化交换的分析包括柔性数字信道化和微波光子变频交换,分组交换则以软件定义卫星网络为代表进行探讨。然后,针对空间组网与交换的未来研究方向,从系统容量、可靠性、管控效能、服务质量的角度,对星载交换技术的发展趋势与挑战进行展望,为天地一体化信息网络的长期规划提供参考。
中图分类号:
吴昊, 王帅, 邓献策, 刘沛龙, 刘凯, 晏坚. 面向天地一体化信息网络的星载交换技术发展现状与趋势[J]. 天地一体化信息网络, 2021, 2(2): 2-10.
Hao WU, Shuai WANG, Xiance DENG, Peilong LIU, Kai LIU, Jian YAN. On-Board Switching for Space-Integrated-Ground Information Network: Progress and Trends[J]. Space-Integrated-Ground Information Networks, 2021, 2(2): 2-10.
[1] | 吴曼青, 吴巍, 周彬 ,等. 天地一体化信息网络总体架构设想[J]. 卫星与网络, 2016(3): 30-36. |
WU M Q , WU W , ZHOU B ,et al. The overall architecture vision of Space and Ground Integrated Information Network[J]. Satellite &Network, 2016(3): 30-36. | |
[2] | 吴巍 . 天地一体化信息网络发展综述[J]. 天地一体化信息网络, 2020,1(1): 11-26. |
WU W . Survey on the development of space-integrated-ground information network[J]. Space-Integrated-Ground Information Networks, 2020,1(1): 11-26. | |
[3] | VAIDYANATHAN P . Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M,having the perfect-reconstruction property[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1987,35(4): 476-492. |
[4] | KOILPILLAI R D , VAIDYANATHAN P P . Cosine-modulated FIR filter banks satisfying perfect reconstruction[J]. IEEE Transactions on Signal Processing, 1992,40(4): 770-783. |
[5] | ABU-AL-SAUD W A , STUBER G L . Efficient wideband channelizer for software radio systems using modulated PR filterbanks[J]. IEEE Transactions on Signal Processing, 2004,52(10): 2807-2820. |
[6] | NGUYEN T Q . Near-perfect-reconstruction pseudo-QMF banks[J]. IEEE Transactions on Signal Processing, 1994,42(1): 65-76. |
[7] | NGUYEN T Q , KOILPILLAI R D . The theory and design of arbitrary-length cosine-modulated filter banks and wavelets,satisfying perfect reconstruction[J]. IEEE Transactions on Signal Processing, 1996,44(3): 473-483. |
[8] | LU W S , SARAMAKI T , BREGOVIC R . Design of practically perfect-reconstruction cosine-modulated filter banks:A second-order cone programming approach[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2004,51(3): 552-563. |
[9] | YIN S S , CHAN S C , TSUI K M . On the design of nearly-PR and PR FIR cosine modulated filter banks having approximate cosine-roll off transition band[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2008,55(6): 571-575. |
[10] | JAIN A , SAXENA R , SAXENA S C . An improved and simplified design of cosine-modulated pseudo-QMF filter banks[J]. Digital Signal Processing, 2006,16(3): 225-232. |
[11] | DATAR A , JAIN A , SHARMA P C . Design of Kaiser window based optimized prototype filters for cosine modulated filter banks[J]. Signal Processing, 2010,90(5): 1742-1749. |
[12] | DATAR A , JAIN A , SHARMA P C . Design and performance analysis of adjustable window functions based cosine modulated filter banks[J]. Digital Signal Processing, 2013,23(1): 412-417. |
[13] | CRUZ-ROLDáN F , SANTAMARíA I , BRAVO A M . Frequency sampling design of prototype filters for nearly perfect reconstruction cosine-modulated filter banks[J]. IEEE Signal Processing Letters, 2004,11(3): 397-400. |
[14] | CRUZ-ROLDáN F , HENEGHAN C , SAEZ-LANDETE J B ,et al. Multi-objective optimisation technique to design digital filters for modulated multi-rate systems[J]. Electronics Letters, 2008,44(13): 827-828. |
[15] | MARSHALL J , HEISSLER J . SATCOM loading analysis with heterogeneous gain states[C]// MILCOM 2002. Piscataway:IEEE Press, 2002: 136-141. |
[16] | MARSHALL J , JO K Y . Non-homogeneous gain state optimization for transponding satellite communications[C]// IEEE Military Communications Conference. Piscataway:IEEE Press, 2003,1 517-522. |
[17] | JO K Y . Optimal loading of satellite systems with subchannel gainstate control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008,44(2): 795-801. |
[18] | LIU C , YAN J , CHEN X ,et al. Capacity and loading analysis of digital channelized SATCOM system[C]// 7th International Conference on Communications and Networking in China. Piscataway:IEEE Press, 2012: 155-160. |
[19] | WANG S , YAN J , KUANG L L . Efficient power allocation for profits maximization in digital channelized SATCOM systems[C]// Proceedings of the International Astronautical Congress (IAC).[S.l.:s.n.], 2019. |
[20] | SOTOM M , BENAZET B , KERNEC A L ,et al. Microwave photonic technologies for flexible satellite telecom payloads[C]// 2009 35th European Conference on Optical Communication. Piscataway:IEEE Press, 2009: 1-4. |
[21] | VONO S , PAOLO G D , PICCINNI M ,et al. Towards telecommunication payloads with photonic technologies[C]// 2014 International Conference on Space Optics. USA:SPIE,, 2017,10563: 1054-1062. |
[22] | LV Q , ZHANG A , HUANG N ,et al. Study on photonic and digital hybrid flexible satellite payload[C]// International Topical Meeting on Microwave Photonics. Piscataway:IEEE Press, 2017: 1-4. |
[23] | WU H , YAN J , LU J H . RuleMap:Protocol independent packet classification for software defined satellite networks[C]// Proceedings of the International Astronautical Congress (IAC).[S.l.:s.n.], 2020. |
[24] | LI T , ZHOU H , LUO H ,et al. SAT-FLOW:Multi-strategy flow table management for software defined satellite networks[J]. IEEE Access, 2017(5): 14952-14965. |
[25] | NGUYEN X N , SAUCEZ D , BARAKAT C ,et al. OFFICER:A general optimization framework for openFlow rule allocation and endpoint policy enforcement[C]// Computer Communications. Piscataway:IEEE Press, 2015. |
[26] | HUANG H , GUO S , WU J ,et al. Green datapath for TCAM-based software-defined networks[J]. IEEE Communications Magazine, 2016,54(11): 194-201. |
[27] | VAMANAN B , VOSKUILEN G , VIJAYKUMAR T N . EffiCuts:Optimizing packet classification for memory and throughput[J]. ACM SIGCOMM Computer Communication Review, 2010,40(4): 207-218. |
[28] | LI W , LI X , LI H ,et al. Cutsplit:A decision-tree combining cutting and splitting for scalable packet classification[C]// IEEE INFOCOM 2018-IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2018: 2645-2653. |
[29] | KOGAN K , NIKOLENKO S , ROTTENSTREICH O ,et al. SAXPAC (scalable and expressive packet classification)[C]// Proceedings of the 2014 ACM Conference on SIGCOMM. New York:ACM Press, 2014: 15-26. |
[30] | DALY J , TORNG E . Tuplemerge:Building online packet classifiers by omitting bits[C]// 2017 26th International Conference on Computer Communication and Networks (ICCCN). Piscataway:IEEE Press, 2017: 1-10. |
[31] | YINGCHAREONTHAWORNCHAI S , DALY J , LIU A X ,et al. A sorted partitioning approach to high-speed and fast-update OpenFlow classification[C]// 2016 IEEE 24th International Conference on Network Protocols (ICNP). Piscataway:IEEE Press, 2016: 1-10. |
[32] | BOSSHART P , DALY D , GIBB G ,et al. P4:Programming protocolindependent packet processors[J]. ACM SIGCOMM Computer Communication Review, 2014,44(3): 87-95. |
[33] | SONG H , . Protocol-oblivious forwarding:Unleash the power of SDN through a future-proof forwarding plane[C]// Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking. New York:ACM Press, 2013: 127-132. |
[34] | LU J , ZHANG Z , HU T ,et al. A survey of controller placement problem in software-defined networking[J]. IEEE Access, 2019(7): 24290-24307 |
[35] | XU S , WANG X W , HUANG M . Software-defined next-generation satellite networks:Architecture,challenges,and solutions[J]. IEEE Access, 2018(6): 4027-4041. |
[36] | KHORRAMIZADEH M , AHMADI V . Capacity and load-aware software-defined network controller placement in heterogeneous environments[J]. Computer Communications, 2018,129(SEP.): 226-247. |
[37] | QIAN M , FEI H , QI H . Deep learning for intelligent wireless networks:A comprehensive survey[J]. IEEE Communications Surveys& Tutorials, 2018,20(4): 2595-2621. |
[38] | WU H , YAN J , LU J H . FlowTrace:Maximizing the service payoff of heterogeneous communications networks[J]. IEEE Transactions on Network Science and Engineering, 2020,7(4): 2481-2493. |
[39] | CHAN V W S . Optical satellite networks[J]. Journal of Lightwave Technology, 2003,21(11): 2811-2827. |
[40] | 吴宾 . 卫星激光微波混合网络中继交换关键技术研究[D]. 大连:大连理工大学, 2019. |
WU B . Research on key technologies of relay and switching for hybrid satellite network of laser and microwave[D]. Dalian:Dalian University of Technology, 2019. | |
[41] | YU X S , WANG K , GU H X ,et al. The optical interconnection network for cloud computing data centers:States of the art and future research[J]. Chinese Journal of Computers, 2015,38(10): 1924-1945. |
[42] | CARPINELLI J D , NASSAR H . Fault-tolerance for switching networks[M]. Switching Networks: Recent Advances.Springer, 2001. |
[43] | YAN J , LIU K , CHEN X ,et al. An interconnected multi-plane multi-stage fault-tolerant on-board switching fabric[J]. China Communications, 2015,12(2): 74-83. |
[44] | 刘凯, 晏坚, 高晓琳 ,等. 星载Clos网络的全分布式容错调度算法[J]. 电子与信息学报, 2016(38): 1377-1384. |
LIU K , YAN J , GAO X L ,et al. Fully distributed fault tolerant scheduling for onboard clos-network switching[J]. Journal of Electronics & Information Technology, 2016(38): 1377-1384. | |
[45] | 陈果 . 基于P4的可编程数据交换原型系统的设计与实现[D]. 西安:西安电子科技大学, 2018. |
CHEN G . Design and implementation of a P4-based programmable data switching prototype system[D]. Xi'an:XIDIAN University, 2018. | |
[46] | LUO S , YU H , LI K ,et al. Efficient file dissemination in data center networks with priority-based adaptive multicast[J]. IEEE Journal on Selected Areas in Communications, 2020,38(6): 1161-1175. |
[47] | LEE J , MIAO R , KIM C ,et al. Stateful layer-4 load balancing in switching ASICs[C]// Sigcomm Posters & Demos. New York:ACM Press, 2017: 133-135. |
[48] | PIT-CLAUDEL B , DESMOUCEAUX Y , PFISTER P ,et al. Stateless load-aware load balancing in P4[C]// 1st P4 European Workshop,IEEE International Conference on Network Protocols. Piscataway:IEEE Press, 2018. |
[49] | CHEN X Q , LANDAU F S , YARON K ,et al. Fine-grained queue measurement in the data plane[C]// Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies. New York:ACM Press, 2019: 15-29. |
[50] | MIAO R , ZENG H , KIM C ,et al. SilkRoad:Making stateful layer-4 load balancing fast and cheap using switching ASICs[C]// The Conference of the ACM Special Interest Group. New York:ACM Press, 2017. |
[51] | CHEN Q , YU F R , HUANG T ,et al. An integrated framework for software defined networking,caching,and computing[J]. IEEE Network, 2017(26): 12-21. |
[52] | LI J , XUE K , LIU J ,et al. An ICN/SDN-based network architecture and efficient content retrieval for future satellite-terrestrial integrated networks[J]. IEEE Network, 2020,34(1): 188-195. |
[53] | ZHANG J , HUANG T , WANG S ,et al. Future internet:Trends and challenges[J]. Frontiers of Information Technology and Electronic Engineering, 2019(9): 1185-1194. |
[54] | NELSON D P J , . When should the network be the computer? [C]// 17th Workshop on Hot Topics in Operating Systems (HotOS). New York:ACM Press, 2019: 209-215. |
[55] | TOKUSASHI Y , DANG H T , PEDONE F ,et al. The case for innetwork computing on demand[C]// The Fourteenth EuroSys Conference 2019 CD-ROM. New York:ACM Press, 2019: 1-16. |
[56] | YANG F , WANG Z , MA X ,et al. Understanding the performance of in-network computing:A case study[C]// 2019 IEEE Intl Conference on Parallel & Distributed Processing with Applications,Big Data &Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking. Piscataway:IEEE Press, 2019: 26-35. |
[57] | LI Y J , LIU I J , YUAN Y F ,et al. Accelerating distributed reinforcement learning with in-switch computing[C]// Proceedings of the 46th International Symposium on Computer Architecture. New York:ACM Press, 2019: 279-291. |
[1] | 曹琦轩, 史琰, 周连伟, 丁新旺. 面向大规模卫星网络协议设计和性能评估的实时仿真系统设计及验证[J]. 天地一体化信息网络, 2023, 4(1): 31-41. |
[2] | 谢旭旭, 丁晓进, 洪涛, 张更新. 基于波束成形的低轨卫星物联网接入技术[J]. 天地一体化信息网络, 2023, 4(1): 59-65. |
[3] | 舒晴, 张校宁, 费泽松. 基于系统容量最大化的多星跳波束资源分配[J]. 天地一体化信息网络, 2022, 3(4): 12-21. |
[4] | 杨宁, 郭道省. 星地融合网络中基于三维频谱感知的空时频谱机会检测[J]. 天地一体化信息网络, 2022, 3(4): 67-74. |
[5] | 李静玲, 黎军, 梁薇, 崔涛, 张怡. 卫星异质信息网络中节点重要度衡量方法[J]. 天地一体化信息网络, 2022, 3(2): 56-62. |
[6] | 缪中宇, 侯晓庚, 郑寒雨, 郝媛媛. 美国天基信息系统发展现状分析[J]. 天地一体化信息网络, 2022, 3(2): 81-88. |
[7] | 黄颖, 简晨, 李伟, 严康. 非静止卫星轨道星座系统固定波束到地功率通量密度研究[J]. 天地一体化信息网络, 2022, 3(1): 87-93. |
[8] | 刘垚圻, 李红光, 周一青, 石晶林, 苏泳涛, 钱晋希. 数字孪生卫星互联网:架构与关键技术[J]. 天地一体化信息网络, 2022, 3(1): 62-71. |
[9] | 丁晓进, 洪涛, 刘锐, 彭文滔, 张更新. 低轨卫星物联网体系架构及关键技术研究[J]. 天地一体化信息网络, 2021, 2(4): 10-18. |
[10] | 阚鹏程, 王子宁, 孔槐聪, 欧阳键, 林敏. 基于下行NOMA的多波束卫星通信稳健波束成形算法[J]. 天地一体化信息网络, 2021, 2(4): 53-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|