[1] |
GAO D , ZHANG R , LI W , et al. Twitter hyperlink recommendation with user-tweet-hyperlink three-way clustering[C]// The 21st ACM In-ternational Conference on Information and Knowledge Management. ACM, c2012:2535-2538.
|
[2] |
LONG B , ZHANG Z , W X , et al. Spectral clustering for multi-type relational data[C]// The 23rd International Conference on Machine Learning. Pittsburgh,Pennsylvania,ACM, c2006:585-592.
|
[3] |
WANG H , HUANG H , DING C . Simultaneous clustering of mul-ti-type relational data via symmetric nonnegative matrix tri-factorization[C]// The 20th ACM international Conference on In-formation and Knowledge Management. Glasgow. Scotland, UK, ACM, c2011:279-284.
|
[4] |
LIU J , WANG C , GAO J . Multi-view custering via joint nonneg-ative matrix factorization[C]// 2013 SIAM International Conference on Data Mining.SIAM. c2013.
|
[5] |
WANG H , HUANG H , DING C . Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization[C]// The 20th ACM International Conference on Information and Knowledge Management. ACM. c2011:279-284.
|
[6] |
LIU Y , SHEN C . Orthogonal nonnegative matrix factoriza ion for multi-type relational clustering[J]. International Journal of Computer and Information Technolog, 2013,2(2): 215-221.
|
[7] |
WANG H , NIE F , HUANG H , et al. Fast nonnegative matrix tri-factoriza-tion for large-scale data co-clustering[C]// The 22nd International joint Conference on Artificial Intelligence, China, c2011:1553-1558.
|
[8] |
DHILLON I S , MALLELA S , MODHA D S . Information theoret co-clustering[C]// The 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, c2003:89-98.
|
[9] |
LI T , DING C . The relationships among various nonnegative matrix factorization methods for clustering[C]// The 6th International Confe-rence on Data Mining, Hong Kong, China, c2006:362-371.
|
[10] |
GU Q , ZHOU J . Co-clustering on manifolds[C]// The 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, c2009:359-368.
|
[11] |
LI P , BU J , CHEN C , et al. Relational co-clustering via manifold ensemble learning[C]// The 21st ACM International Conference on In-formation and Knowledge Management. ACM, c2012:1687-1691.
|
[12] |
HOYER P O . Non-negative matrix factorization with sparseness constraints[J]. The Journal of Machine Learning Research, 2004,(5): 1457-1469.
|
[13] |
XING E P , JORDAN M I , RUSSELL S , et al. Distance metric learning. with application to clustering with side-information[C]// Advances in Neural Information Processing Systems. c2002:505-512.
|
[14] |
WANG H , NIE F , HUANG H . Robust distance metric learning via simultaneous l1-norm minimization and maximization[C]// The 31st International Conference on Machine Learning. c2014:1836-1844.
|
[15] |
HSIEH C-J , DHILLON I S . Fast coordinate descent methods with variable selection for non-negative matrix factorization[C]// The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM. c2011:1064-1072.
|
[16] |
KIM J , HE Y , PARK H . Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework[J]. Journal of Global Optimization, 2013,58(2): 285-319.
|
[17] |
THOM M , PALM G . Efficient sparseness-enforcing projections[J]. arXiv preprint arXiv:13035259, 2013.
|
[18] |
CHEN Y H , WANG L J , DONG M . Non-negative matrix factorization for semisupervised heterogeneous data coclustering[J]. IEEE Transac-tions on Knowledge and Data Engineering, 2010,22(10): 1459-1474.
|
[19] |
ZHAO Y , KARYPIS G . Criterion Functions for Document Clustering: Experiments and analysis[R]. City, 2001.
|
[20] |
STREHL A , GHOSH J . Cluster ensembles-a knowledge reuse frame-work for combining multiple partitions[J]. The Journal of Machine Learning Research, 2003,3:583-617.
|
[21] |
HUBERT L , ARABIE P . Comparing partitions[J]. Journal o Classifi-cation, 1985,2(1):193-218.
|
[22] |
LOMET A , GOVAERT G , GRANDVALET Y . Design of Artificial Data Tables for Co-clustering Analysis[R]. City, 2012.
|
[23] |
MCGEE J , CAVERLEE J , CHENG Z . Location prediction in social media based on tie strength[C]// The 22nd ACM international Confe-rence on Information and Knowledge Management. San Francisco, California, USA,ACM. c2013:459-468.
|
[24] |
LI R , WANG S , DENG H , et al. Towards social user profiling: unified. and discriminative influence model for inferring home loca-tions[C]// The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China,ACM, c2012:1023-1031.
|