[1] |
KLAPPER A . The vulnerability of geometric sequences based on fields of odd characteristic[J]. Journal of Crypto, 1994,7(1): 33-51.
|
[2] |
DING C S . Linear complexity of generalized cyclotomic binary sequences of order 2[J]. Finite Fields and Their Applications, 1997,8: 159-174.
|
[3] |
DING C S , HELLESETH T . New generalized cyclotomy and its applications[J]. Finite Fields and Their Applications, 1998,4(2): 140-166.
|
[4] |
YAN T J , HUANG B J , XIAO G Z . Cryptographic properties of some binary generalized cyclotomic sequences with the length p2[J]. Information Sciences, 2008,178(3): 1078-1086.
|
[5] |
KIM Y J , JIN S Y , SONG H Y . Linear complexity and autocorrelation of prime cube sequences[C]// Applicable Algebra in Engineering,Communication and Computing. 2007: 188-197.
|
[6] |
YAN T J , LI S Q , XIAO G Z . On the linear complexity of generalized cyclotomic sequences with the period pm[J]. Applied Mathematics Letters, 2008,21(2): 187-193.
|
[7] |
DU X N , CHEN Z X . Trace representation of binary generalized cyclotomic sequences with length pm[J]. IEICE Transaction on Fundamentals, 2011,E94-A(2): 761-765.
|
[8] |
DING C S . Cyclic codes from the two primes sequences[J]. IEEE Transactions on Information Theory, 2012,58(6): 3881-3891.
|
[9] |
DING C S . Cyclic codes from cyclotomic sequences of order four[J]. Finite Fields and Their Applications, 2013,23(1): 8-34.
|
[10] |
CAI H , ZHOU Z C , YANG Y.et al . A new construction of frequency-hopping sequences optimal partial hamming correlation[J]. IEEE Transactions on Information Theory, 2014,60(9): 5782-5790.
|
[11] |
柯品惠, 章海辉, 张胜元 . 新的具有最优平均汉明相关性的跳频序列族[J]. 通信学报, 2012,33(9): 168-175.
|
|
KE P H , ZHANG H H , ZHANG S Y . New class of frequency-hopping sequences set with optimal average Hamming correlation property[J]. Journal on Communications, 2012,33(9): 168-175.
|
[12] |
XU S D . Optimal frequency-hopping sequences sets based on cyclotomy[J]. International Journal of Foundations of Computer Science, 2016,27(4): 443-462.
|
[13] |
CAI H , LIANG H B , TANG X H . Constructions of optimal 2-D optical orthogonal codes via generalized cyclotomic classes[J]. IEEE Transactions on Information Theory, 2015,61(1): 688-695.
|
[14] |
CUSICK T W , DING C S , RENVALL A . Stream ciphers and number theory[M]. Elsevier Science Pub Co, 1998.
|
[15] |
FAN C L , GE G . A unified approach to whiteman's and Ding- Helleseth's generalized cyclotomy over residue class rings[J]. IEEE Transactions on Information Theory, 2014,60(2): 1326-1336.
|
[16] |
LI D D , CHANG Z L . Linear complexity of generalised cyclotomic quaternary sequences of length 2p(m+1)q(n+1)[J]. IET Information Security, 2016,10(2): 104-111.
|
[17] |
ZHOU Y Q , CHANG Z L . Linear complexity of new generalized cyclotomic sequences of order two with odd length[J]. IEICE Transaction on Fundamentals, 2016,E99-A(8): 1639-1644.
|
[18] |
WANG Q Y , JIANG Y P , LIN D D . Linear complexity of binary generalized cyclotomic sequences over GF(q)[J]. Journal of Complexity, 2015,31(5): 731-740.
|
[19] |
WANG Q Y , JIANG Y P , LIN D D . Linear complexity of Ding-Helleseth sequences of order 2 over GF(l)[J]. Cryptography and Communications, 2015,8(1): 33-49.
|
[20] |
DING C S , HELLESETH T , SHAN W . On the linear complexity of legendre sequences[J]. IEEE Transactions on Information Theory, 1998,44(3): 1276-1278.
|
[21] |
WANG Q Y , LIN D D , GUANG X . On the linear complexity of legendre sequences over Fq[J]. IEICE Transaction on Fundamentals, 2014,E97-A(7): 1627-1630.
|