[1] |
GUNGOR V C , HANCKE G P . Industrial wireless sensor networks:applications,protocols,and standards[J]. Crc Press, 2017(81): 1-2.
|
[2] |
胡青松, 杨维, 丁恩杰 ,等. 煤矿应急救援通信技术的现状与趋势[J]. 通信学报, 2019,40(5): 163-179.
|
|
HU Q S , YANG W , DING E J ,et al. State-of-the-art and trend of emergency rescue communication technologies for coal mine[J]. Journal on Communications, 2019,40(5): 163-179.
|
[3] |
SONY. IEEE 802.11ah/D10.0.Draft for information technology telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements-Part 11:wireless lan medium access control (MAC) and physical layer (PHY) specifications-amendment 2:sub 1 GHz license exempt operation[S].(2016-10-25)[2020-03-02].
|
[4] |
KAI C , ZHANG J , ZHANG X ,et al. Energy-efficient sensor grouping for IEEE 802.11ah networks with max-min fairness guarantees[J]. IEEE Access, 2019(7): 102284-102294.
|
[5] |
SEFERAGIC A , MOERMAN I , DE POORTER E ,et al. Evaluating the suitability of IEEE 802.11ah for low-latency time-critical control loops[J]. IEEE Internet of Things Journal, 2019,6(5): 7839-7848.
|
[6] |
ALI M Z , MISIC J , MISIC V B ,et al. Performance evaluation of heterogeneous IoT nodes with differentiated QoS in IEEE 802.11ah RAW mechanism[J]. IEEE Transactions on Vehicular Technology, 2019,68(4): 3905-3918.
|
[7] |
LAKSHMI L R , SIKDAR B . Achieving fairness in IEEE 802.11 ah networks for IoT applications with different requirements[C]// 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-6.
|
[8] |
AHMED N , DE D , HUSSAIN M I ,et al. A QoS-aware MAC protocol for IEEE 802.11ah-based Internet of things[C]// Wireless and Optical Communications Networks. Piscataway:IEEE Press, 2018: 1-5.
|
[9] |
CHANG T C , LIN C H , LIN K C J ,et al. traffice-aware sensor grouping for IEEE 802.11ah networks:regression based analysis and design[J]. IEEE Transactions on Mobile Computing, 2018,18(3): 674-687.
|
[10] |
TIAN L , KHOROV E , LATRé S ,et al. Real-time station grouping under dynamic traffic for IEEE 802.11 ah[J]. Sensors, 2017,17(7):1559.
|
[11] |
TIAN L , SANTI S , LATRé S ,et al. Accurate sensor traffic estimation for station grouping in highly dense IEEE 802.11 ah networks[C]// Proceedings of the First ACM International Workshop on the Engineering of Reliable,Robust,and Secure Embedded Wireless Sensing Systems. New York:ACM Press, 2017: 1-9.
|
[12] |
YAN J , LIN K , LIAO M ,et al. Timing synchronization free multi-user OFDM-RoF uplink with gold sequence multiplexing[C]// International Conference on Photonics in Switching. Piscataway:IEEE Press, 2019: 1-3.
|
[13] |
SOARES S M , CARVALHO M M . Throughput analytical modeling of IEEE 802.11ah wireless networks[C]// Consumer Communications and Networking Conference. Piscataway:IEEE Press, 2019: 1-4.
|
[14] |
LIU R P , SUTTON G J , COLLINGS I B . WLAN power save with offset listen interval for machine-to-machine communications[J]. IEEE Transactions on Wireless Communications, 2014,13(5): 2552-2562.
|
[15] |
TIAN L , DERONNE S , LATRé S ,et al. Implementation and validation of an IEEE 802.11 ah module for NS-3[C]// Proceedings of the Workshop on NS-3. New York:ACM Press, 2016: 49-56.
|
[16] |
HAZMI A , RINNE J , VALKAMA M . Feasibility study of IΕΕΕ 802.11ah radio technology for IoT and M2M use cases[C]// 2012 IEEE Globecom Workshops. Piscataway:IEEE Press, 2012: 1687-1692.
|