[1] |
LIU Y , MA X , SHU L ,et al. Internet of things for noise mapping in smart cities:state-of-the-art and future directions[J]. IEEE Network, 2020,34(4): 112-118.
|
[2] |
XIONG J , REN J , CHEN L ,et al. Enhancing privacy and availability for data clustering in intelligent electrical service of IoT[J]. IEEE Internet of Things Journal, 2019,6(2): 1530-1540.
|
[3] |
艾瑞咨询. 中国智能物联网(AIoT)白皮书[R].(2020-02-28)[2020-07-20].
|
|
Iresearch.White paper on China’s artificial intelligent and Internet of things (AIoT)[R].(2020-02-28)[2020-07-20].
|
[4] |
XIONG Z , LI W , HAN Q ,et al. Privacy-preserving auto-driving:a GAN-Based approach to protect vehicular camera data[C]// 2019 IEEE International Conference on Data Mining. Piscataway:IEEE Press, 2019: 668-677.
|
[5] |
PéREZ-HERNáNDEZ F , TABIK S , LAMAS A ,et al. Object detection binary classifiers methodology based on deep learning to identify small objects handled similarly:application in video surveillance[J]. Knowledge-Based Systems, 20206(194):105590.
|
[6] |
XIONG J B , CHEN X , YANG Q ,et al. A task-oriented user selection incentive mechanism in edge-aided mobile crowdsensing[J]. IEEE Transactions on Network Science and Engineering, 2019,doi:10.1109/TNSE.2019.2940958.
|
[7] |
CHEN Q , TANG S , YANG Q ,et al. Cooper:cooperative perception for connected autonomous vehicles based on 3d point clouds[C]// 2019 IEEE 39th International Conference on Distributed Computing Systems. Piscataway :IEEE Press, 2019: 514-524.
|
[8] |
CHEN Q , MA X , TANG S ,et al. F-cooper:feature based cooperative perception for autonomous vehicle edge computing system using 3D point clouds[C]// 4th ACM/IEEE Symposium on Edge Computing. New York:ACM Press, 2019: 88-100.
|
[9] |
LIN L , LIAO X , JIN H ,et al. Computation offloading toward edge computing[J]. Proceedings of the IEEE, 2019,107(8): 1584-1607.
|
[10] |
WANG X , HAN Y , LEUNG V ,et al. Convergence of edge computing and deep learning:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020,22(2): 869-904.
|
[11] |
ZHAO Z , ZHENG P , XU S ,et al. Object detection with deep learning:a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(11): 3212-3232.
|
[12] |
REN J , GUO Y , ZHANG D ,et al. Distributed and efficient object detection in edge computing:challenges and solutions[J]. IEEE Network, 2018,32(6): 137-143.
|
[13] |
NIKOUEI S , CHEN Y , SONG S ,et al. Real-time human detection as an edge service enabled by a lightweight CNN[C]// 2018 IEEE International Conference on Edge Computing. Piscataway:IEEE Press, 2018: 125-129.
|
[14] |
ZHANG H , ZHANG Z , ZHANG L ,et al. Object tracking for a smart city using IoT and edge computing[J]. Sensors, 2019,19(9): 1987-2009.
|
[15] |
GIRSHICK R , DONAHUE J , DARRELL T ,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014: 580-587.
|
[16] |
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint,arXiv:1409.1556, 2014
|
[17] |
REN S , HE K , GIRSHICK R ,et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems. Piscataway:IEEE Press, 2015: 91-99.
|
[18] |
REDMON J , DIVVALA S , GIRSHICK R ,et al. You only look once:unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 779-788.
|
[19] |
XIONG J B , ZHAO M , BHUIYAN M ,et al. An AI-enabled three-party game framework for guaranteed data privacy in mobile edge crowdsensing of IoT[J]. IEEE Transactions on Industrial Informatics, 2019,doi:10.1109/TII.2019.2957130.
|
[20] |
GENTRY C , . Fully homomorphic encryption using ideal lattices[C]// Proceedings of the 41th Annual ACM Symposium on Theory of Computing. New York:ACM Press, 2009: 169-178.
|
[21] |
DOWLIN N , GILAD-BACHRACH R , LAINE K ,et al. Cryptonets:applying neural networks to encrypted data with high throughput and accuracy[C]// International Conference on Machine Learning. New York:ACM Press, 2016: 201-210.
|
[22] |
HESAMIFARD E , TAKABI H , GHASEMI M . CryptoDL:deep neural networks over encrypted data[J]. arXiv Preprint,arXiv:1711.05189, 2017
|
[23] |
JUVEKAR C , VAIKUNTANATHAN V , CHANDRAKASAN A . Gazelle:a low latency framework for secure neural network inference[C]// 27th USENIX Security Symposium. Berkeley:USENIX Association, 2018: 1651-1669.
|
[24] |
HUANG K , LIU X M , FU S J ,et al. A lightweight privacy-preserving CNN feature extraction framework for mobile sensing[J]. IEEE Transactions on Dependable and Secure Computing, 2019,doi:10.1109/TDSC.2019.2913362.
|
[25] |
LIU Y , MA Z , LIU X M ,et al. Privacy-preserving object detection for medical images with Faster R-CNN[J]. IEEE Transactions on Information Forensics and Security, 2019(10):1.
|
[26] |
LI F H , LI H , NIU B ,et al. Privacy computing:concept,computing framework,and future development trends[J]. Engineering, 2019,5(6): 981-1192.
|
[27] |
BELANOVI? P , LEESER M , . A library of parameterized floating-point modules and their use[C]// International Conference on Field Programmable Logic and Applications. Berlin:Springer, 2002: 657-666.
|
[28] |
XIONG J B , BI R , ZHAO M ,et al. Edge-assisted privacy-preserving raw data sharing framework for connected autonomous vehicles[J]. IEEE Wireless Communications, 2020,27(3): 24-30.
|
[29] |
BOGDANOV D , LAUR S , WILLEMSON J . Sharemind:a framework for fast privacy-preserving computations[C]// European Symposium on Research in Computer Security. Berlin:Springer, 2008: 192-206.
|
[30] |
BOGDANOV D , NIITSOO M , TOFTETAL T ,et al. High-performance secure multi-party computation for data mining applications[J]. International Journal of Information Security, 2012,11(6): 403-418.
|
[31] |
MA Z , LIU Y , LIU X ,et al. Privacy-preserving outsourced speech recognition for smart IoT devices[J]. IEEE Internet of Things Journal, 2019,6(5): 8406-8420.
|
[32] |
EVERINGHAM M , VANGOOL L , WILLIAMS C ,et al. The PASCAL visual object classes challenge 2007(VOC2007)results[C]// International Conference on Computer Vision. Piscataway:IEEE Press, 2007: 1-24.
|