通信学报 ›› 2022, Vol. 43 ›› Issue (5): 190-203.doi: 10.11959/j.issn.1000-436x.2022071

• 综述 • 上一篇    下一篇

基于深度学习的光学遥感图像目标检测研究进展

廖育荣1, 王海宁2, 林存宝1, 李阳2, 方宇强1, 倪淑燕1   

  1. 1 航天工程大学电子与光学工程系,北京 101416
    2 航天工程大学研究生院,北京 101416
  • 修回日期:2022-03-23 出版日期:2022-05-25 发布日期:2022-05-01
  • 作者简介:廖育荣(1972- ),男,四川德阳人,博士,航天工程大学研究员,主要研究方向为空间智能信息处理、航天测控通信、卫星信号处理技术等
    王海宁(1998- ),男,河南南阳人,航天工程大学硕士生,主要研究方向为遥感图像处理、深度学习、目标检测
    林存宝(1987- ),男,吉林延边人,博士,航天工程大学助理研究员,主要研究方向为空间光学载荷、空间智能信息处理
    李阳(1993- ),女,辽宁大连人,航天工程大学博士生,主要研究方向为遥感图像处理、目标检测
    方宇强(1984- ),男,四川乐山人,博士,航天工程大学副教授,主要研究方向为计算机视觉、机器学习、深度学习
    倪淑燕(1981- ),女,河北清河人,博士,航天工程大学副教授,主要研究方向为数字图像处理、空间智能信息处理等
  • 基金资助:
    国家自然科学基金资助项目(61805283);国家自然科学基金资助项目(61805284);国家自然科学基金资助项目(61906213)

Research progress of deep learning-based object detection of optical remote sensing image

Yurong LIAO1, Haining WANG2, Cunbao LIN1, Yang LI2, Yuqiang FANG1, Shuyan NI1   

  1. 1 Department of Electronic and Optical Engineering, Space Engineering University, Beijing 101416, China
    2 Department of Graduate Management, Space Engineering University, Beijing 101416, China
  • Revised:2022-03-23 Online:2022-05-25 Published:2022-05-01
  • Supported by:
    The National Natural Science Foundation of China(61805283);The National Natural Science Foundation of China(61805284);The National Natural Science Foundation of China(61906213)

摘要:

目标检测是光学遥感图像解译中的核心问题,在情报侦察、目标监视、灾害救援等领域均具有广泛应用。首先,结合深度学习光学遥感图像目标检测算法研究进展,对基于候选区域和回归分析的两类遥感目标检测算法进行了综述。其次,针对旋转目标、小目标、多尺度、密集目标四类常见特定任务场景目标检测算法改进进行了总结。再次,结合常用遥感图像数据集对不同算法性能进行了对比分析。最后,对未来遥感图像目标检测研究值得关注的问题进行了展望,为后续相关研究提供思路。

关键词: 光学遥感图像, 目标检测, 深度学习, 卷积神经网络

Abstract:

Object detection is the core issue in the interpretation of optical remote sensing images, and it is widely used in fields such as intelligence reconnaissance, target monitoring, and disaster rescue.Firstly, combined with the research progress of deep learning optical remote sensing image object detection algorithms, the two types of algorithms based on candidate regions and regression analysis were reviewed.Secondly, the improvement of object detection algorithms for four types of common task-specific scenes were summarized, including rotating objects, small objects, multi-scales, and dense objects.Then, combined with commonly used remote sensing image data sets, the performance of different algorithms was compared and analyzed.Finally, the issues worthy of attention in remote sensing image object detection in the future were prospected, and ideas for follow-up related research were provided.

Key words: optical remote sensing image, object detection, deep learning, convolutional neural network

中图分类号: 

No Suggested Reading articles found!