通信学报 ›› 2022, Vol. 43 ›› Issue (5): 190-203.doi: 10.11959/j.issn.1000-436x.2022071
廖育荣1, 王海宁2, 林存宝1, 李阳2, 方宇强1, 倪淑燕1
修回日期:
2022-03-23
出版日期:
2022-05-25
发布日期:
2022-05-01
作者简介:
廖育荣(1972- ),男,四川德阳人,博士,航天工程大学研究员,主要研究方向为空间智能信息处理、航天测控通信、卫星信号处理技术等基金资助:
Yurong LIAO1, Haining WANG2, Cunbao LIN1, Yang LI2, Yuqiang FANG1, Shuyan NI1
Revised:
2022-03-23
Online:
2022-05-25
Published:
2022-05-01
Supported by:
摘要:
目标检测是光学遥感图像解译中的核心问题,在情报侦察、目标监视、灾害救援等领域均具有广泛应用。首先,结合深度学习光学遥感图像目标检测算法研究进展,对基于候选区域和回归分析的两类遥感目标检测算法进行了综述。其次,针对旋转目标、小目标、多尺度、密集目标四类常见特定任务场景目标检测算法改进进行了总结。再次,结合常用遥感图像数据集对不同算法性能进行了对比分析。最后,对未来遥感图像目标检测研究值得关注的问题进行了展望,为后续相关研究提供思路。
中图分类号:
廖育荣, 王海宁, 林存宝, 李阳, 方宇强, 倪淑燕. 基于深度学习的光学遥感图像目标检测研究进展[J]. 通信学报, 2022, 43(5): 190-203.
Yurong LIAO, Haining WANG, Cunbao LIN, Yang LI, Yuqiang FANG, Shuyan NI. Research progress of deep learning-based object detection of optical remote sensing image[J]. Journal on Communications, 2022, 43(5): 190-203.
表1
基于候选区域的遥感目标检测算法相关信息"
文献 | 算法亮点 | 适用范围 |
文献[ | 引入特征融合模块,在准确提取深层网络特征的同时简化计算空间复杂度 | |
文献[ | 采用区域上下文信息增强目标特征与对应场景之间的联系 | |
文献[ | 调整特征图尺度变换的方式,增强遥感目标检测的特征表征能力 | 针对一般遥感目标特征表示阶段改进 |
文献[ | 固定角度旋转进行数据增强,调整特征图尺度变换的方式 | |
文献[ | 浅层卷积特征提取时使用正则化器 | |
文献[ | 引入特征共享集成机制 | |
文献[ | 提出位置敏感平衡策略 | |
文献[ | 提出选择性搜索匹配策略 | |
文献[ | 提出旋转不敏感RPN,有效提高了对遥感图像中多方向目标的检测效果 | |
文献[ | 提出一种改进的NMS模块,以更好地进行目标区域筛选 | |
文献[ | 提出一种兴趣区域特征金字塔池化模块 | 针对一般遥感目标感兴趣区域生成与处理阶段改进 |
文献[ | 提出一种ROI形变器 | |
文献[ | 提出一种ROI排序方法 | |
文献[ | 提出一种ROI旋转策略 | |
文献[ | 将ROI Pooling层与不同交并比加权损失值相结合以提高目标区域定位精度 | |
文献[ | 提出了一种结合掩模预测及语义分割算法,使ROI中保留更多目标空间特征向量 | |
文献[ | 计算旋转IoU损失 | |
文献[ | 计算联合交集IoU损失 | |
文献[ | 设计了比例约束NMS算法,能够筛除遥感目标预选框中的错误结果 | 针对一般遥感目标提升定位精度改进 |
文献[ | 提出了衰减NMS算法,能够解决多种遥感目标不同尺度重叠的问题 |
表2
基于回归分析的遥感目标检测算法相关信息"
文献 | 算法亮点 | 适用范围 |
文献[ | 在特殊应用背景下的成功探索 | |
文献[ | 设计特征增强模块,能够提升目标的特征表达能力 | |
文献[ | 设计特征精细化模块,能够实现目标特征的细致区分 | |
文献[ | 结合空洞卷积,有效提升YOLO算法针对大目标的精度提升 | 对检测速度有更高要求的快速遥感目标检测场景 |
文献[ | 引入多感受域算法,提高了目标特征提取能力 | |
文献[ | 引入注意力机制实现精度与速度间的最佳权衡 | |
文献[ | 采取密集连接网络以增强目标特征提取能力 | |
文献[ | 分别针对小目标、多尺度、多模态等专项遥感检测场景定制化改进 | |
文献[ | 引入空间和通道注意力模块以筛选融合特征信息 | |
文献[ | 结合空洞卷积与特征融合策略,能够增强浅层特征的语义信息 | |
文献[ | 设计新的编码-解码模块,结合空间和通道注意力级联结构 | |
文献[ | 采取连续两次回归的策略,使检测结果更加精确 | 对检测速度与精度间有均衡要求的一般遥感目标检测场景 |
文献[ | 通过定向边界框生成角度修正参数 | |
文献[ | 通过旋转边界框学习遥感目标的正确角度方向 | |
文献[ | 利用密集连接网络提取特征 | |
文献[ | 结合激活函数CReLU和特征金字塔网络,能够提升网络的浅层特征的利用率 | |
文献[ | 利用浅层信息并增大小目标训练权重以提升特征传递效率 |
表3
面向特定任务场景的遥感目标检测算法相关信息"
文献 | 算法亮点 | 适用范围 |
文献[ | 随机角度旋转以进行数据增强 | |
文献[ | 有序四边形表示法学习矩形各边的偏移 | |
文献[ | 结合多层特征与锚定采样的特征融合网络 | |
文献[ | 监督空间注意力机制与多步检测子网络级联相结合 | |
文献[ | 将旋转角度回归转化为分类问题并限制分类结果的范围 | |
文献[ | 2个任意方向高斯分布的Wasserstein距离作为旋转IoU损失 | 针对遥感旋转目标的改进 |
文献[ | 提出自适应调整的神经元感受野模块 | |
文献[ | 提出目标中线以进行旋转角度回归 | |
文献[ | 提出学生T-分布将分类任务与旋转角度回归相关联 | |
文献[ | 提出掩模分支预测下获取目标旋转边界框 | |
文献[ | 添加正则化项约束训练样本在前后的特征表示 | |
文献[ | 减小网络降采样的倍数,并将浅层与深层特征融合拼接 | 针对遥感小目标的改进 |
文献[ | 在浅层特征图中聚合上下文信息,并增加小目标训练权重 | |
文献[ | 构建包含不同尺度信息的特征融合架构 | |
文献[ | 寻找合适的ROI尺寸进行多尺度特征映射与融合 | |
文献[ | 将视觉注意力网络引入多尺度信息融合模块 | |
文献[ | 结合全局注意力模块将多尺度特征图输入显著性金字塔 | 针对遥感多尺度目标的改进 |
文献[ | 提出定向引导的锚点框生成网络以生成合适的锚点框 | |
文献[ | 利用特征金字塔进行不同尺度目标信息的提取 | |
文献[ | 使用超尺度块作为核心结构构建超尺度目标检测框架 | |
文献[ | 利用Transformer模型的预测主体提升多尺度预测能力 | |
文献[ | 基于圆形平滑标签设计损失函数 | 针对遥感密集目标的改进 |
表4
常用的光学遥感图像目标检测数据集概述"
数据集 | 发布者及内容描述 | 目标类别数/个 | 图像数/幅 |
TAS [ | 由Stanford大学发布的车辆目标数据集 | 1 | 30 |
OIRDS [ | 由Raytheon公司发布的车辆目标数据集 | 5 | 900 |
SZTAKI [ | 由Mta Sztaki发布的旋转建筑物目标数据集 | 1 | 9 |
UCAS-AOD [ | 由中国科学院发布的车辆和飞机目标数据集,以及背景负样本 | 2 | 976 |
NWPU VHR-10 [ | 由西北工业大学发布的飞机、舰船、油罐、棒球场、网球场、篮球场等目标数据集 | 10 | 1 510 |
VEDAI [ | 由Caen大学发布的车辆目标数据集 | 9 | 1 210 |
HRSC2016 [ | 由西北工业大学发布的舰船目标数据集 | 1 | 1 061 |
DLR3k [ | 由German Aerospace Center发布的车辆目标数据集 | 7 | 20 |
RSOD [ | 由武汉大学发布的飞机、油箱、运动场和立交桥目标数据集 | 4 | 976 |
TGRS-HRRSD [ | 由中国科学院发布的舰船、桥梁、田径场、油罐、篮球场、网球场等目标数据集 | 13 | 21 761 |
LEVIR [ | 由北京航空航天大学发布的飞机、舰船、油罐目标数据集 | 3 | 22 000 |
ITCVD [ | 由Twente大学发布的车辆目标数据集 | 1 | 135 |
DIOR [ | 由西北工业大学发布的飞机、机场、篮球场、桥梁、烟囱、水坝等目标数据集 | 20 | 23 463 |
DOTA [ | 由武汉大学发布的舰船、游泳池、田径场、港口、直升机、足球场等目标数据集 | 16 | 2 806 |
FAIR1M [ | 由中国科学院等发布的飞机、舰船、车辆、球场、道路等5种大类别、37个细粒度类别的数据集,是目前全球规模最大的光学遥感图像细粒度目标检测识别数据集 | 37 | 15 000 |
表5
典型光学遥感图像目标检测算法性能对比"
数据集 | 算法 | 主干网络 | 改进功能 | mAP | |||
目标旋转 | 微小目标 | 多尺度 | 目标密集 | ||||
GWD[ | ResNet152 | √ | √ | 80.23 | |||
HSP[ | ResNet101 | √ | √ | 78.01 | |||
NLFE[ | ResNet50 | √ | 77.46 | ||||
DCL[ | ResNet152 | √ | √ | 77.37 | |||
R3Det[ | ResNet152 | √ | √ | 76.47 | |||
CLS[ | ResNet152 | √ | √ | 76.24 | |||
APERO[ | ResNet101 | √ | √ | 75.75 | |||
FFA[ | ResNet101 | √ | √ | 75.70 | |||
SCFPN[ | ResNet101 | √ | 75.22 | ||||
DOTA数据集 | Gliding vertex[ | ResNet101 | √ | 75.02 | |||
RSDet[ | ResNet152 | √ | √ | 74.10 | |||
DR-Net[ | CenterNet | √ | 73.23 | ||||
GLS-Net[ | ResNet101 | √ | √ | 72.96 | |||
IoU-Adaptive[ | ResNet101 | √ | √ | 72.72 | |||
FMSSD[ | VGG16 | √ | √ | 72.43 | |||
CAD-Net[ | ResNet101 | √ | 69.60 | ||||
RoITransformer[ | ResNet101 | √ | √ | 69.56 | |||
TEANS[ | ResNet101 | √ | 66.01 | ||||
AFF-SSD[ | ResNet50 | √ | 52.60 | ||||
HyNet[ | ResNet50 | √ | √ | 98.52 | |||
SCRDet[ | ResNet101 | √ | √ | √ | 91.75 | ||
MS-OPN AODN[ | GoogleNet | √ | √ | √ | 91.52 | ||
CAD-Net[ | ResNet101 | √ | 91.50 | ||||
FMSSD[ | VGG16 | √ | √ | 90.40 | |||
AF-SSD[ | ShuffleNetV2 | √ | 88.70 | ||||
NWPU VHR-10数据集 | RICA[ | ZFNet | √ | 87.12 | |||
Deformable Faster RCNN[ | ResNet50 | 84.40 | |||||
Sig-NMS[ | VGG16 | √ | 82.90 | ||||
PSB[ | ResNet101 | 81.20 | |||||
HSF-Net[ | VGG16 | √ | √ | 81.15 | |||
Deformable R-FCN[ | ResNet101 | √ | 79.10 | ||||
R-P-Faster R-CNN[ | VGG16 | √ | 76.50 | ||||
DFSSD[ | VGG16 | √ | 65.35 |
[1] | CHENG G , HAN J W . A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,117: 11-28. |
[2] | WANG Z , BOVIK A C , SHEIKH H R ,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4): 1-14. |
[3] | WU W . Quantized Gromov-Hausdorff distance[J]. Journal of Functional Analysis, 2006,238: 58-98. |
[4] | HAREL J , KOCH C , PERONA P . Graph-based visual saliency[J]. Advances in Neural Information Processing Systems, 2006,19: 545-552. |
[5] | SEDAGHAT A , EBADI H . Remote sensing image matching based on adaptive binning SIFT descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(10): 5283-5293. |
[6] | DALAL N , TRIGGS B . Histograms of oriented gradients for human detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2005: 886-893. |
[7] | GóMEZ C L , TUIA D , MOSER G ,et al. Multimodal classification of remote sensing images:a review and future directions[J]. Proceedings of the IEEE, 2015,103(9): 1560-1584. |
[8] | ZHU X X , TUIA D , MOU L C ,et al. Deep learning in remote sensing:a comprehensive review and list of resources[J]. IEEE geoscience and remote sensing magazine, 2017,5(4): 8-36. |
[9] | 罗会兰, 陈鸿坤 . 基于深度学习的目标检测研究综述[J]. 电子学报, 2020,48(6): 1230-1239. |
LUO H L , CHEN H K . Survey of object detection based on deep learning[J]. ACTA ELECTRONICA SINICA, 2021,48(6): 1230-1239. | |
[10] | LI Y S , ZHANG Y J , HUANG X ,et al. Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,146: 182-196. |
[11] | XUE B , TONG N N . DIOD:fast and efficient weakly semi-supervised deep complex ISAR object detection[J]. IEEE Transactions on Cybernetics, 2019,49(11): 3991-4003. |
[12] | YU D W , JI S P . A new spatial-oriented object detection framework for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60: 1-16. |
[13] | 周勇, 陈思霖, 赵佳 ,等. 基于弱语义注意力的遥感图像可解释目标检测[J]. 电子学报, 2021,49(4): 679-689. |
ZHOU Y , CHEN S L , ZHAO J ,et al. Weakly semantic based attention network for interpretable object detection in remote sensing imagery[J]. ACTA ELECTRONICA SINICA, 2021,49(4): 679-689. | |
[14] | ZHANG Y J , SHENG W G , JIA J F ,et al. Priority branches for ship detection in optical remote sensing[J]. Remote Sensing, 2020,12(7): 1196. |
[15] | LI K , WAN G , CHENG G ,et al. Object detection in optical remote sensing images:a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,159: 296-307. |
[16] | 聂光涛, 黄华 . 光学遥感图像目标检测算法综述[J]. 自动化学报, 2021,47(8): 1749-1768. |
NIE G T , HUANG H . A survey of object detection in optical remote sensing images[J]. ACTA AUTOMATICA SINICA, 2021,47(8): 1749-1768. | |
[17] | 宋志娜, 眭海刚, 李永成 . 高分辨率可见光遥感图像舰船目标检测综述[J]. 武汉大学学报(信息科学版), 2021:doi.org/10.13203/j.whugis20200481. |
SONG Z N , SUI H G , LI Y C . A survey on ship detection technology in high-resolution optical remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2021:doi.org/10.13203/j.whugis20200481. | |
[18] | GIRSHICK R , DONAHUE J , DARRELL T ,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2014: 580-587. |
[19] | GIRSHICK R , . Fast R-CNN[C]// Proceedings of IEEE Conference on Computer Vision. Piscataway:IEEE Press, 2015: 1440-1448. |
[20] | REN S Q , HE K M , GIRSHICK R ,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6): 1137-1149. |
[21] | XU C Y , LI C Z , CUI Z ,et al. Hierarchical semantic propagation for object detection in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(6): 4353-4364. |
[22] | FU K , CHANG Z H , ZHANG Y ,et al. Rotation-aware and multi-scale convolutional neural network for object detection in remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,161: 294-308. |
[23] | CHEN C Y , GONG W G , CHEN Y L ,et al. Object detection in remote sensing images based on a scene-contextual feature pyramid network[J]. Remote Sensing, 2019,11(3): 339. |
[24] | YAN D C , LI G Q , LI X Q ,et al. An improved faster R-CNN method to detect tailings ponds from high-resolution remote sensing images[J]. Remote Sensing, 2021,13(11): 2052. |
[25] | ZHANG G J , LU S J , ZHANG W . CAD-Net:a context-aware detection network for objects in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(12): 10015-10024. |
[26] | LI Q P , MOU L C , LIU Q J ,et al. HSF-Net:multiscale deep feature embedding for ship detection in optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(12): 7147-7161. |
[27] | 赵彤洲, 杨成万, 刘威 . 非局部特征增强的遥感图像目标检测方法[J]. 华中科技大学学报(自然科学版), 2021:doi.org/10.13245/j.hust.210909. |
ZHAO T Z , YANG C W , LIU W . Remote sensing image object detection method based on non-local feature enhancement[J]. Journal of Huazhong University of Science & Technology.(Natural Science Edition), 2021:doi.org/10.13245/j.hust.210909. | |
[28] | CHENG G , HAN J W , ZHOU P C ,et al. Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection[J]. IEEE Transactions on Image Processing, 2019,28(1): 265-278. |
[29] | HAN X B , ZHONG Y F , ZHANG L P . An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery[J]. Remote Sensing, 2017,9(7): 666. |
[30] | ZHONG Y F , HAN X B , ZHANG L P . Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,138: 281-294. |
[31] | LONG Y , GONG Y P , XIAO Z F ,et al. Accurate object localization in remote sensing images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(5): 2486-2498. |
[32] | LI K , CHENG G , BU S H ,et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,56(4): 2337-2348. |
[33] | DONG R C , XU D Z , ZHAO J ,et al. Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(11): 8534-8545. |
[34] | 仲伟峰, 郭峰, 向世明 ,等. 旋转矩形区域的遥感图像舰船目标检测模型[J]. 计算机辅助设计与图形学学报, 2019,31(11): 1935-1945. |
ZHONG W F , GUO F , XIANG S M ,et al. Ship detection in remote sensing based with rotated rectangular region[J]. Journal of Computer-Aided Design & Computer Graphics, 2019,31(11): 1935-1945. | |
[35] | REN Y , ZHU C R , XIAO S P . Deformable Faster R-CNN with aggregating multi-layer features for partially occluded object detection in optical remote sensing images[J]. Remote Sensing, 2018,10(9): 1470. |
[36] | DING P , ZHANG Y , DENG W J ,et al. A light and faster regional convolutional neural network for object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,141: 208-218. |
[37] | ZHANG S M , WU R Z , XU K Y ,et al. R-CNN-based ship detection from high resolution remote sensing imagery[J]. Remote Sensing, 2019,11(6): 631. |
[38] | YAN J Q , WANG H Q , YAN M L ,et al. IoU-adaptive deformable R-CNN:make full use of IoU for multi-class object detection in remote sensing imagery[J]. Remote Sensing, 2019,11(3): 286. |
[39] | HE K M , GKIOXARI G , DOLLáR P ,et al. Mask R-CNN[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 2980-2988. |
[40] | WU Q F , FENG D Q , CAO C Q ,et al. Improved Mask R-CNN for aircraft detection in remote sensing images[J]. Sensors, 2021,21(8): 2618. |
[41] | DING J , XUE N , LONG Y ,et al. Learning RoI transformer for oriented object detection in aerial images[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 2844-2853. |
[42] | ZHU Y X , DU J , WU X Q . Adaptive period embedding for representing oriented objects in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(10): 7247-7257. |
[43] | XU Z Z , XU X , WANG L ,et al. Deformable ConvNet with aspect ratio constrained NMS for object detection in remote sensing imagery[J]. Remote Sensing, 2017,9(12): 1312. |
[44] | CHEN H B , JIANG S , HE G H ,et al. TEANS:a target enhancement and attenuated nonmaximum suppression object detector for remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2021,18(4): 632-636. |
[45] | REDMON J , DIVVALA S , GIRSHICK R ,et al. You only look once:unified,real-time object detection[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 779-788. |
[46] | LIU W , ANGUELOV D , ERHAN D ,et al. SSD:single shot multibox detector[C]// Proceedings of European Conference on Computer Vision. Berlin:Springer, 2016: 21-37. |
[47] | REDMON J , FARHADI A . YOLO9000:better,faster,stronger[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 6517-6525. |
[48] | REDMON J , FARHADI A . YOLOv3:an incremental improvement[J]. arXiv Preprint,arXiv:1804.02767, 2018. |
[49] | BOCHKOVSKIY A , WANG C Y , LIAO H Y . YOLOv4:optimal speed and accuracy of object detection[J]. arXiv Preprint,arXiv:2004.10934, 2020. |
[50] | JOCHER G , STOKEN A , BOROVEC J ,et al. Ultralytics/yolov5:v4.0[EB]. 2021. |
[51] | GE Z , LIU S T , WANG F ,et al. YOLOX:exceeding YOLO series in 2021[J]. arXiv Preprint,arXiv:2107.08430, 2021. |
[52] | MA H J , LIU Y L , REN Y H ,et al. Detection of collapsed buildings in post-earthquake remote sensing images based on the improved YOLOv3[J]. Remote Sensing, 2019,12(1): 44. |
[53] | CHANG Y L , ANAGAW A , CHANG L N ,et al. Ship detection based on YOLOv2 for SAR imagery[J]. Remote Sensing, 2019,11(7): 786. |
[54] | WANG C S , WANG Q , WU H R ,et al. Low-altitude remote sensing opium poppy image detection based on modified YOLOv3[J]. Remote Sensing, 2021,13(11): 2130. |
[55] | XU D Q , WU Y Q . FE-YOLO:a feature enhancement network for remote sensing target detection[J]. Remote Sensing, 2021,13(7): 1311. |
[56] | YANG X , YAN J C , FENG Z M ,et al. R3Det:refined single-stage detector with feature refinement for rotating object[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2021: 3163-3171. |
[57] | LIU W C , MA L , WANG J ,et al. Detection of multiclass objects in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(5): 791-795. |
[58] | XU D Q , WU Y Q . MRFF-YOLO:a multi-receptive fields fusion network for remote sensing target detection[J]. Remote Sensing, 2020,12(19): 3118. |
[59] | HU J M , ZHI X Y , SHI T J ,et al. PAG-YOLO:a portable attention-guided YOLO network for small ship detection[J]. Remote Sensing, 2021,13(16): 3059. |
[60] | CHEN L Q , SHI W X , DENG D X . Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images[J]. Remote Sensing, 2021,13(4): 660. |
[61] | XU D Q , WU Y Q . Improved YOLO-V3 with DenseNet for multi-scale remote sensing target detection[J]. Sensors, 2020,20(15): 4276. |
[62] | WU K J , BAI C S , WANG D C ,et al. Improved object detection algorithm of YOLOv3 remote sensing image[J]. IEEE Access, 2021,9: 113889-113900. |
[63] | PHAM M T , COURTRAI L , FRIGUET C ,et al. YOLO-fine:one-stage detector of small objects under various backgrounds in remote sensing images[J]. Remote Sensing, 2020,12(15): 2501. |
[64] | VAN ETTEN A . You only look twice:rapid multi-scale object detection in satellite imagery[J]. arXiv Preprint,arXiv:1805.09512, 2018. |
[65] | HONG Z H , YANG T , TONG X H ,et al. Multi-scale ship detection from SAR and optical imagery via a more accurate YOLOv3[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14: 6083-6101. |
[66] | SHARMA M , DHANARAJ M , KARNAM S ,et al. YOLOrs:object detection in multimodal remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020,14: 1497-1508. |
[67] | LU X C , JI J , XING Z Q ,et al. Attention and feature fusion SSD for remote sensing object detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021,70: 1-9. |
[68] | QU J S , SU C , ZHANG Z W ,et al. Dilated convolution and feature fusion SSD network for small object detection in remote sensing images[J]. IEEE Access, 2020,8: 82832-82843. |
[69] | YIN R H , ZHAO W , FAN X D ,et al. AF-SSD:an accurate and fast single shot detector for high spatial remote sensing imagery[J]. Sensors, 2020,20(22): 6530. |
[70] | BAO S Z , ZHONG X , ZHU R F ,et al. Single shot anchor refinement network for oriented object detection in optical remote sensing imagery[J]. IEEE Access, 2019,7: 87150-87161. |
[71] | TANG T Y , ZHOU S L , DENG Z P ,et al. Arbitrary-oriented vehicle detection in aerial imagery with single convolutional neural networks[J]. Remote Sensing, 2017,9(11): 1170. |
[72] | LIU L , PAN Z X , LEI B . Learning a rotation invariant detector with rotatable bounding box[J]. arXiv Preprint,arXiv:1711.09405, 2017. |
[73] | 郭智, 宋萍, 张义 ,等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018,40(11): 2684-2690. |
GUO Z , SONG P , ZHANG Y ,et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics & Information Technology, 2018,40(11): 2684-2690. | |
[74] | 李晖晖, 周康鹏, 韩太初 . 基于CReLU和FPN改进的 SSD舰船目标检测[J]. 仪器仪表学报, 2020,41(4): 183-190. |
LI H H , ZHOU K P , HAN T C . Ship object detection based on SSD improved with CReLU and FPN[J]. Chinese Journal of Scientific Instrument, 2020,41(4): 183-190. | |
[75] | WANG P J , SUN X , DIAO W H ,et al. FMSSD:feature-merged single-shot detection for multiscale objects in large-scale remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(5): 3377-3390. |
[76] | SCHILLING H , BULATOV D , NIESSNER R ,et al. Detection of vehicles in multisensor data via multibranch convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(11): 4299-4316. |
[77] | QIAN W , YANG X , PENG S L ,et al. Learning modulated loss for rotated object detection[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2021: 2458-2466. |
[78] | XU Y C , FU M T , WANG Q M ,et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(4): 1452-1459. |
[79] | YANG X , YANG J R , YAN J C ,et al. SCRDet:towards more robust detection for small,cluttered and rotated objects[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019: 8231-8240. |
[80] | HOU L P , LU K , XUE J ,et al. Cascade detector with feature fusion for arbitrary-oriented objects in remote sensing images[C]// Proceedings of 2020 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE Press, 2020: 1-6. |
[81] | YANG X , YAN J C , HE T . Arbitrary-oriented object detection with circular smooth label[J]. arXiv Preprint,arXiv:2003.05597, 2020. |
[82] | YANG X , HOU L P , ZHOU Y ,et al. Dense label encoding for boundary discontinuity free rotation detection[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2021: 15814-15824. |
[83] | YANG X , YAN J C , MING Q ,et al. Rethinking rotated object detection with Gaussian Wasserstein distance loss[C]// Proceedings of International Conference on Machine Learning. New York:ACM Press, 2021: 11830-11841. |
[84] | PAN X J , REN Y Q , SHENG K K ,et al. Dynamic refinement network for oriented and densely packed object detection[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 11204-11213. |
[85] | WEI H R , ZHANG Y , CHANG Z H ,et al. Oriented objects as pairs of middle lines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,169: 268-279. |
[86] | FENG P M , LIN Y T , GUAN J ,et al. TOSO:student’s-T distribution aided one-stage orientation target detection in remote sensing images[C]// Proceedings of 2020 IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE Press, 2020: 4057-4061. |
[87] | LI Y Y , HUANG Q , PEI X ,et al. RADet:refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images[J]. Remote Sensing, 2020,12(3): 389. |
[88] | CHENG G , ZHOU P C , HAN J W . Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(12): 7405-7415. |
[89] | LI C Y , CONG R M , GUO C L ,et al. A parallel down-up fusion network for salient object detection in optical remote sensing images[J]. Neurocomputing, 2020,415: 411-420. |
[90] | ZHANG Q J , CONG R M , LI C Y ,et al. Dense attention fluid network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Image Processing, 2021,30: 1305-1317. |
[91] | DENG Z P , SUN H , ZHOU S L ,et al. Multi-scale object detection in remote sensing imagery with convolutional neural networks[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,145: 3-22. |
[92] | DONG Z P , WANG M , WANG Y L ,et al. Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020,58(3): 2104-2114. |
[93] | WANG C , BAI X , WANG S ,et al. Multiscale visual attention networks for object detection in VHR remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(2): 310-314. |
[94] | LI C Y , LUO B , HONG H L ,et al. Object detection based on global-local saliency constraint in aerial images[J]. Remote Sensing, 2020,12(9): 1435. |
[95] | YU Y T , GUAN H Y , LI D L ,et al. Orientation guided anchoring for geospatial object detection from remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,160: 67-82. |
[96] | HUA X , WANG X Q , RUI T ,et al. A fast self-attention cascaded network for object detection in large scene remote sensing images[J]. Applied Soft Computing, 2020,94:106495. |
[97] | ZHENG Z , ZHONG Y F , MA A L ,et al. HyNet:hyper-scale object detection network framework for multiple spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,166: 1-14. |
[98] | VASWANI A , SHAZEER N , PARMAR N ,et al. Attention is all you need[C]// Annual Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2017: 5998-6008. |
[99] | ZHU X K , LYU S C , WANG X ,et al. TPH-YOLOv5:improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway:IEEE Press, 2021: 2778-2788. |
[100] | QING Y H , LIU W Y , FENG L Y ,et al. Improved YOLO network for free-angle remote sensing target detection[J]. Remote Sensing, 2021,13(11): 2171. |
[101] | HEITZ G , KOLLER D . Learning spatial context:using stuff to find things[C]// Lecture Notes in Computer Science. Berlin:Springer, 2008: 30-43. |
[102] | FRANKLIN T , BRIAN C , CRAIG P ,et al. Overhead imagery research data set - an annotated data library & tools to aid in the development of computer vision algorithms[C]// Proceedings of 2009 IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009). Piscataway:IEEE Press, 2009: 1-8. |
[103] | MAGGIORI E , TARABALKA Y , CHARPIAT G ,et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]// Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE Press, 2017: 3226-3229. |
[104] | ZHU H G , CHEN X G , DAI W Q ,et al. Orientation robust object detection in aerial images using deep convolutional neural network[C]// Proceedings of 2015 IEEE International Conference on Image Processing. Piscataway:IEEE Press, 2015: 3735-3739. |
[105] | CHENG G , HAN J W , ZHOU P C ,et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,98: 119-132. |
[106] | RAZAKARIVONY S , JURIE F . Vehicle detection in aerial imagery:a small target detection benchmark[J]. Journal of Visual Communication and Image Representation, 2016,34: 187-203. |
[107] | LIU Z K , YUAN L , WENG L B ,et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]// Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. Francisco:SciTePress, 2017: 324-331. |
[108] | LIU K , MATTYUS G . Fast multiclass vehicle detection on aerial images[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(9): 1938-1942. |
[109] | ZHANG Y L , YUAN Y , FENG Y C ,et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(8): 5535-5548. |
[110] | ZOU Z X , SHI Z W . Random access memories:a new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2018,27(3): 1100-1111. |
[111] | YANG Y M . ITCVD dataset[EB]. 2018. |
[112] | XIA G S , BAI X , DING J ,et al. DOTA:a large-scale dataset for object detection in aerial images[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 3974-3983. |
[113] | SUN X , WANG P J , YAN Z Y ,et al. FAIR1M:a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022,184: 116-130. |
[114] | CHENG G , YAN B W , SHI P Z ,et al. Prototype-CNN for few-shot object detection in remote sensing images[C]// Proceedings of IEEE Transactions on Geoscience and Remote Sensing. Piscataway:IEEE Press, 2022: 1-10. |
[115] | LI X , DENG J Y , FANG Y . Few shot object detection in remote sensing images[C]// Proceedings of IEEE Transactions on Geoscience and Remote Sensing. Piscataway:IEEE Press, 2021: 76-81. |
[116] | CUI Y Y , HOU B , WU Q ,et al. Remote sensing object tracking with deep reinforcement learning under occlusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60: 1-13. |
[117] | MERANER A , EBEL P , ZHU X X ,et al. Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,166: 333-346. |
[118] | DU Q , TANG B , XIE W Y ,et al. Parallel and distributed computing for anomaly detection from hyperspectral remote sensing imagery[J]. Proceedings of the IEEE, 2021,109(8): 1306-1319. |
[1] | 陈东昱, 陈华, 范丽敏, 付一方, 王舰. 基于深度学习的随机性检验策略研究[J]. 通信学报, 2023, 44(6): 23-33. |
[2] | 李荣鹏, 汪丙炎, 张宏纲, 赵志峰. 知识增强的语义通信接收端设计[J]. 通信学报, 2023, 44(6): 70-76. |
[3] | 马帅, 裴科, 祁华艳, 李航, 曹雯, 王洪梅, 熊海良, 李世银. 基于生成模型的地磁室内高精度定位算法研究[J]. 通信学报, 2023, 44(6): 211-222. |
[4] | 杨洁, 董标, 付雪, 王禹, 桂冠. 基于轻量化分布式学习的自动调制分类方法[J]. 通信学报, 2022, 43(7): 134-142. |
[5] | 李昂, 陈建新, 魏昕, 周亮. 面向6G的跨模态信号重建技术[J]. 通信学报, 2022, 43(6): 28-40. |
[6] | 杨秀璋, 彭国军, 李子川, 吕杨琦, 刘思德, 李晨光. 基于Bert和BiLSTM-CRF的APT攻击实体识别及对齐研究[J]. 通信学报, 2022, 43(6): 58-70. |
[7] | 王晓丹, 李京泰, 宋亚飞. DDAC:面向卷积神经网络图像隐写分析模型的特征提取方法[J]. 通信学报, 2022, 43(5): 68-81. |
[8] | 廖勇, 王世义. 高速移动环境下基于RM-Net的大规模MIMO CSI反馈算法[J]. 通信学报, 2022, 43(5): 166-176. |
[9] | 张帆, 黄赟, 方子茁, 郭威. 卷积神经网络的损失最小训练后参数量化方法[J]. 通信学报, 2022, 43(4): 114-122. |
[10] | 赵增华, 童跃凡, 崔佳洋. 基于域自适应的Wi-Fi指纹设备无关室内定位模型[J]. 通信学报, 2022, 43(4): 143-153. |
[11] | 朱政宇, 侯庚旺, 黄崇文, 孙钢灿, 郝万明, 梁静. 基于并行CNN的RIS辅助D2D保密通信系统资源分配算法[J]. 通信学报, 2022, 43(3): 172-179. |
[12] | 廖勇, 程港, 李玉杰. 基于深度展开的大规模MIMO系统CSI反馈算法[J]. 通信学报, 2022, 43(12): 77-88. |
[13] | 段雪源, 付钰, 王坤, 李彬. 基于简单统计特征的LDoS攻击检测方法[J]. 通信学报, 2022, 43(11): 53-64. |
[14] | 霍俊彦, 邱瑞鹏, 马彦卓, 杨付正. 基于最邻近帧质量增强的视频编码参考帧列表优化算法[J]. 通信学报, 2022, 43(11): 136-147. |
[15] | 康海燕, 冀源蕊. 基于本地化差分隐私的联邦学习方法研究[J]. 通信学报, 2022, 43(10): 94-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|