通信学报 ›› 2022, Vol. 43 ›› Issue (2): 171-184.doi: 10.11959/j.issn.1000-436x.2022025
卢汉成1,2, 王亚正1, 赵丹1, 罗涛1, 吴俊3
修回日期:
2022-01-09
出版日期:
2022-02-25
发布日期:
2022-02-01
作者简介:
卢汉成(1977-),男,湖北通城人,博士,中国科学技术大学副教授,合肥综合性国家科学中心研究员,主要研究方向为智能反射表面辅助无线通信、多媒体通信与网络、无线异构网络中的资源优化等基金资助:
Hancheng LU1,2, Yazheng WANG1, Dan ZHAO1, Tao LUO1, Jun WU3
Revised:
2022-01-09
Online:
2022-02-25
Published:
2022-02-01
Supported by:
摘要:
为了满足未来无线通信系统高谱效、高能效的要求,智能反射表面(IRS)技术得到了广泛的关注与研究。通过对IRS进行设计优化,能够从不同的角度增强无线通信系统的物理层安全(PLS)。基于此,对现有的IRS增强物理层安全的研究进行整理,从信息理论安全、隐蔽通信、密钥生成等主要方向对现有研究进行了归纳总结,阐述了各研究热点的模型特点和关键方法。最后,对IRS增强的物理层安全进行了总结梳理,并探讨了未来的研究热点方向。
中图分类号:
卢汉成, 王亚正, 赵丹, 罗涛, 吴俊. 智能反射表面辅助的无线通信系统的物理层安全综述[J]. 通信学报, 2022, 43(2): 171-184.
Hancheng LU, Yazheng WANG, Dan ZHAO, Tao LUO, Jun WU. Survey of physical layer security of intelligent reflecting surface-assisted wireless communication systems[J]. Journal on Communications, 2022, 43(2): 171-184.
表1
IRS辅助无线系统的物理层安全优化研究"
文献 | 系统模型 | 优化目标 | 关键技术 |
文献[25-27,35,41, 43,48, 53,58,61,62] | 单LU、单Eav、MISO | SR 最大化、发送功率最小化、EE 最大化、最差 SR 最大化 | BCD、SDR、SDP、AN、Dinkelbach、DNN、SCA、柯西不等式、全双工Jamming |
文献[28-30,37-38] | 单LU、单Eav、MIMO | SR最大化 | FP、MO、MM、MMSE、BCD、AN |
文献[34,36,51,55-56,60] | 多LU、多Eav、MISO | 最小SR最大化、最小SNR最大化、和速率最大化 | 路径跟踪、ZF、DRL、SCA、ADMM、SDR、AN、惩罚凹凸规划 |
文献[40,42,50,54] | 单LU、多Eav、MISO | 发送功率最小化、EE最大化 | 二阶锥规划、SDP、SDR、CJ、S-procedure、AN |
文献[39] | 多LU、单Eav、MISO | 最小SR最大化 | SDR、SCA、IRS选择 |
文献[31,57] | 单LU、单Eav、OFDM | EE最大化、SR最大化 | DNN、MM、拉格朗日乘子法 |
文献[44,52] | NOMA无线系统 | 发送功率最小化、SR最大化 | SDR、SCA、史密斯正交化、AN |
文献[32-33,49] | mmWave无线系统 | SR最大化 | MO、高频信道低秩特性、SDP、SDR、BCD、OMP |
文献[45-46] | SWIPT系统 | 能量采集最大化 | SCA、SDR、一阶泰勒展开、序列参数凸逼近 |
文献[47] | 双向通信系统 | 和SR最大化 | 凸函数差、GR |
文献[59] | UAV通信系统 | 多用户和SR最大化 | DRL-DDPG |
文献[86] | CRN系统 | EE最大化 | SDP、迭代惩罚函数、二阶锥规划、凸函数差 |
文献[87] | MEC无线系统 | 发送功率最小化 | SDR、Dinkelbach、全双工BS |
表2
IRS辅助无线系统的物理层安全性能分析研究"
文献 | 系统模型 | 性能指标 | 研究特点 |
文献[ | 单LU及单Eav的SISO无线系统 | SOP | 连续IRS相位;大IRS元件数目;高SNR;渐近分析 |
文献[ | 单LU及多Eav的SISO无线系统 | ESR | 离散IRS相位;大IRS元件数目;2种Eav工作模式:协同、不协同;渐近分析 |
文献[ | 单LU及单Eav的SISO无线系统 | SOP | 离散IRS相位;标度定理;渐近分析;闭式表达式 |
文献[ | 单LU及多Eav的SISO无线系统 | SOP、ASR | 射线模型;莱斯信道;闭式表达式 |
文献[ | 多LU及单Eav的MIMO无线系统 | SOP、PNSC、ASR | 连续 IRS 相位;随机几何;2 种场景:存在、不存在直连链路;2种通信系统存在、不存在IRS;渐近分析 |
文献[ | 2个典型LU及单Eav的SISO-NOMA无线系统 | ASR | 连续IRS相位;闭式表达式 |
文献[ | 单LU及单Eav的SISO车通信系统 | SOP | 连续IRS相位;不依赖于CLT,即小IRS元件数目;闭式表达式 |
文献[ | 单中心用户及单Eav的SISO-D2D通信系统 | SOP、PNSC | 连续IRS相位;渐近分析 |
文献[ | 全双工LU、单Eav的SISO无线系统 | IP | 连续IRS相位;2种情形:存在、不存在干扰;闭式表达式 |
文献[ | 多对收发器、单Eav的SISO双向通信系统 | ASR | 连续IRS相位;标度定理;ASR下界的闭式表达式 |
表3
IRS辅助无线系统的隐蔽通信研究"
文献 | 系统模型 | 研究内容 | 关键技术 |
文献[ | 无直连链路、单 Willie、一对全双工收发器的MISO/MIMO无线系统 | DEP、通信中断概率的分析及闭式表达式;一定隐蔽率及通信中断概率限制下的CR最大化问题 | PDD、BCD、空间包围球技术 |
文献[ | 单Willie、一对收发端的SISO/MISO无线系统 | 单/多天线Alice系统中,Willie处部分/瞬时CSI情况下的CR最大化问题;4种非完美Alice-Willie级联链路CSI情况对隐蔽通信性能的影响 | SCA、SDR、GR、MRT、ZF |
文献[ | 单 Willie、2 个接收用户 Bob 与 Roy 的SISO-NOMA无线系统 | 上/下行NOMA系统DEP的分析;上行NOMA系统Bob处CR最大化问题;下行NOMA系统解码Bob信息CR最大化问题 | SDR、SDP、GR |
文献[ | 单Willie、一对收发端的SISO无线系统 | 全CSI已知时,Bob处SNR最大化问题;无法知晓Willie处CSI时,不同IRS反射幅度情况下的SNR最大化问题 | PSCA、SCA |
文献[ | 单Willie、一对收发端的SISO无线系统 | 最差情况下期望 DEP 的闭式表达式;联合优化传输概率、传输功率、IRS相位的Bob速率最大化问题 | 二分搜索法、黄金分割法 |
文献[ | 单Willie、一对收发端的SISO无线系统 | Willie的探测性能分析;仅知晓Willie的数据统计CSI时,一定隐蔽率下中断概率最小化问题 | 一维搜索法、CVX |
文献[ | 单Willie、一对收发端的MIMO无线系统 | 联合优化传输方差矩阵、IRS相位的CR最大化问题 | 拉格朗日乘子法、MM |
文献[ | 单Willie、一对收发端的MISO无线系统 | 完美隐蔽条件下的CR最大化问题 | SDR、SVD |
表4
IRS辅助无线系统的物理层安全其他研究方向"
文献 | 研究目标 | 研究内容 |
文献[ | 存在多个非协同Eav的SISO无线系统中的SKG增强 | SKC下界的闭式表达式分析;基于SCA-SDR的最小SKC最大化优化算法 |
文献[ | 单LU及单Eav的SISO无线系统中的SKG增强 | 准确SKR的分析;SKR的渐近分析;通过调整IRS元件的切换时间来提升SKR |
文献[ | 单LU及单Eav的SISO无线系统中的SKG增强 | IRS辅助SKG的流程设计;基于启发式算法和DRL的SKG增强 |
文献[ | 一次性密码本通信系统中的SKG增强 | Eav处CSI未知时,SKR的理论表达分析;基于最优时隙分配算法的SKG增强 |
文献[ | 单LU及单Eav的SISO无线系统中的SKG协议设计 | SKG相关的信道探测协议设计;SKR的上下界分析 |
文献[ | 存在PCA的MIMO无线系统中的SR增强 | 导频攻击下的CSI获取;基于MRT/ZF的SR最大化算法 |
文献[ | IRS辅助的PCA及其探测与反制 | 对IRS辅助的PCA的探测;基于多个协同节点传输的CE方法;基于ZF的PLS增强 |
文献[ | IRS辅助的导频攻击及SR降低 | IRS辅助导频攻击的流程设计;基于数据统计CSI的SR降低算法设计 |
[1] | GUO F Q , LU H C , GU Z J . Joint power and user grouping optimization in cell-free massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2021,21(2): 991-1006. |
[2] | GU Z J , LU H C , ZHANG M ,et al. Association and caching in relay-assisted mmWave networks:a stochastic geometry perspective[J]. IEEE Transactions on Wireless Communications, 2021,20(12): 8316-8332. |
[3] | WU Q Q , ZHANG S W , ZHENG B X ,et al. Intelligent reflecting surface-aided wireless communications:a tutorial[J]. IEEE Transactions on Communications, 2021,69(5): 3313-3351. |
[4] | DI R M , ZAPPONE A , DEBBAH M ,et al. Smart radio environments empowered by reconfigurable intelligent surfaces:how it works,state of research,and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020,38(11): 2450-2525. |
[5] | GONG S M , LU X , HOANG D T ,et al. Toward smart wireless communications via intelligent reflecting surfaces:a contemporary survey[J]. IEEE Communications Surveys & Tutorials, 2020,22(4): 2283-2314. |
[6] | RENZO M D , DEBBAH M , PHAN-HUY D T , ,et al. Smart radio environments empowered by reconfigurable AI meta-surfaces:an idea whose time has come[J]. EURASIP Journal on Wireless Communications and Networking,2019, 2019:129. |
[7] | ALMOHAMAD A , TAHIR A M , AL-KABABJI A , ,et al. Smart and secure wireless communications via reflecting intelligent surfaces:a short survey[J]. IEEE Open Journal of the Communications Society, 2020,1: 1442-1456. |
[8] | 朱政宇, 王梓晅, 徐金雷 ,等. 智能反射面辅助的未来无线通信网络:现状与展望[J]. 航空学报, 2021:doi.org/10.7527/S1000-6893.2021.25014. |
ZHANG Z Y , WANG Z X , XU J L ,et al. Future wireless communication networks aided by intelligent reflectors:current status and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2021:doi.org/10.7527/S1000-6893.2021.25014. | |
[9] | LIASKOS C , NIE S , TSIOLIARIDOU A ,et al. A new wireless communication paradigm through software-controlled metasurfaces[J]. IEEE Communications Magazine, 2018,56(9): 162-169. |
[10] | LIASKOS C , NIE S , TSIOLIARIDOU A ,et al. Realizing wireless communication through software-defined HyperSurface environments[C]// Proceedings of 2018 IEEE 19th International Symposium on. Piscataway:IEEE Press, 2018: 14-15. |
[11] | TAN X , SUN Z , KOUTSONIKOLAS D ,et al. Enabling indoor mobile millimeter-wave networks based on smart reflect-arrays[C]// Proceedings of IEEE INFOCOM 2018-IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2018: 270-278. |
[12] | WU Q Q , ZHANG R . Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[C]// Proceedings of IEEE Transactions on Wireless Communications. Piscataway:IEEE Press, 2019,18(11): 5394-5409. |
[13] | HUANG C W , ZAPPONE A , ALEXANDROPOULOS G C ,et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019,18(8): 4157-4170. |
[14] | GUO H Y , LIANG Y C , CHEN J ,et al. Weighted sum-rate maximization for intelligent reflecting surface enhanced wireless networks[C]// Proceedings of 2019 IEEE Global Communications Conference. Piscataway:IEEE Press, 2019: 1-6. |
[15] | WANG Y Z , LU H C , ZHAO D ,et al. Intelligent reflecting surface-assisted mmWave communication with lens antenna array[J]. IEEE Transactions on Cognitive Communications and Networking, 2021:doi.org/10.1109/TCCN.2021.3114184. |
[16] | WANG Y Z , LU H C , ZHAO D ,et al. Energy efficiency optimization in IRS-enhanced mmWave systems with lens antenna array[C]// Proceedings of GLOBECOM 2020-2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020: 1-6. |
[17] | ZHAO D , LU H C , WANG Y Z ,et al. Joint passive beamforming and user association optimization for IRS-assisted mmWave systems[C]// Proceedings of GLOBECOM 2020-2020 IEEE Global Communications Conference. Piscataway:IEEE Press, 2020: 1-6. |
[18] | ZHAO D , LU H C , WANG Y Z ,et al. Joint power allocation and user association optimization for IRS-assisted mmWave systems[J]. IEEE Transactions on Wireless Communications, 2022,21(1): 577-590. |
[19] | ZHANG Z J , DAI L L . A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network[J]. IEEE Transactions on Signal Processing, 2021,69: 4085-4101. |
[20] | ZHAO D , LU H C , GUI Y Q ,et al. Reconfigurable intelligent surface integrated user-centric network:architecture and optimization[J]. IEEE Communications Magazine, 2021,59(8): 93-99. |
[21] | ZHU Z Y , LI Z , CHU Z ,et al. Resource allocation for intelligent reflecting surface assisted wireless powered IoT systems with power splitting[J]. IEEE Transactions on Wireless Communications, 2021:doi.org/10.1109/TWC.2021.3117346. |
[22] | YANG Y F , ZHENG B X , ZHANG S W ,et al. Intelligent reflecting surface meets OFDM:protocol design and rate maximization[J]. IEEE Transactions on Communications, 2020,68(7): 4522-4535. |
[23] | WANG P L , FANG J , DUAN H P ,et al. Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[J]. IEEE Signal Processing Letters, 2020,27: 905-909. |
[24] | WANG Y Z , LU H C , SUN H . Channel estimation in IRS-enhanced mmWave system with super-resolution network[J]. IEEE Communications Letters, 2021,25(8): 2599-2603. |
[25] | YU X H , XU D F , SCHOBER R . Enabling secure wireless communications via intelligent reflecting surfaces[C]// Proceedings of 2019 IEEE Global Communications Conference. Piscataway:IEEE Press, 2019: 1-6. |
[26] | CUI M , ZHANG G C , ZHANG R . Secure wireless communication via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2019,8(5): 1410-1414. |
[27] | CHU Z , HAO W M , XIAO P ,et al. Intelligent reflecting surface aided multi-antenna secure transmission[J]. IEEE Wireless Communications Letters, 2020,9(1): 108-112. |
[28] | SHEN H , XU W , GONG S L ,et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[J]. IEEE Communications Letters, 2019,23(9): 1488-1492. |
[29] | FENG K M , LI X , HAN Y ,et al. Physical layer security enhancement exploiting intelligent reflecting surface[J]. IEEE Communications Letters, 2021,25(3): 734-738. |
[30] | DONG L M , WANG H M . Secure MIMO transmission via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2020,9(6): 787-790. |
[31] | JIANG W H , CHEN B L , ZHAO J ,et al. Joint active and passive beamforming design for the IRS-assisted MIMOME-OFDM secure communications[J]. IEEE Transactions on Vehicular Technology, 2021,70(10): 10369-10381. |
[32] | XIU Y , ZHAO J , YUEN C ,et al. Secure beamforming for multiple intelligent reflecting surfaces aided mmWave systems[J]. IEEE Communications Letters, 2021,25(2): 417-421. |
[33] | QIAO J P , ALOUINI M S . Secure transmission for intelligent reflecting surface-assisted mmWave and terahertz systems[J]. IEEE Wireless Communications Letters, 2020,9(10): 1743-1747. |
[34] | CHEN J , LIANG Y C , PEI Y Y ,et al. Intelligent reflecting surface:a programmable wireless environment for physical layer security[J]. IEEE Access, 2019,7: 82599-82612. |
[35] | GUAN X R , WU Q Q , ZHANG R . Intelligent reflecting surface assisted secrecy communication:is artificial noise helpful or not?[J]. IEEE Wireless Communications Letters, 2020,9(6): 778-782. |
[36] | NIU H H , CHU Z , ZHOU F H ,et al. Weighted sum secrecy rate maximization using intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021,69(9): 6170-6184. |
[37] | HONG S , PAN C H , REN H ,et al. Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface[J]. IEEE Transactions on Communications, 2020,68(12): 7851-7866. |
[38] | CHU Z , HAO W M , XIAO P ,et al. Secrecy rate optimization for intelligent reflecting surface assisted MIMO system[J]. IEEE Transactions on Information Forensics and Security, 2021,16: 1655-1669. |
[39] | LI J , ZHANG L , XUE K P ,et al. Secure transmission by leveraging multiple intelligent reflecting surfaces in MISO systems[J]. IEEE Transactions on Mobile Computing, 2021:1. |
[40] | KAWAI Y , SUGIURA S . QoS-constrained optimization of intelligent reflecting surface aided secure energy-efficient transmission[J]. IEEE Transactions on Vehicular Technology, 2021,70(5): 5137-5142. |
[41] | 刘期烈, 杨建红, 徐勇军 ,等. 面向安全通信的智能反射面网络能效优化算法[J]. 电讯技术, 2020,60(12): 1391-1397. |
LIU Q L , YANG J H , XU Y J ,et al. An energy-efficient optimization algorithm for secure-based intelligent reflecting surface networks[J]. Telecommunication Engineering, 2020,60(12): 1391-1397. | |
[42] | WANG Q , ZHOU F H , HU R Q ,et al. Energy-efficient beamforming and cooperative jamming in IRS-assisted MISO networks[C]// Proceedings of ICC 2020-2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-7. |
[43] | TANG X , LAN X Q , ZHAI D S ,et al. Securing wireless transmissions with RIS-receiver coordination:passive beamforming and active jamming[J]. IEEE Transactions on Vehicular Technology, 2021,70(6): 6260-6265. |
[44] | LI N , LI M , LIU Y W ,et al. Intelligent reflecting surface assisted NOMA with heterogeneous internal secrecy requirements[J]. IEEE Wireless Communications Letters, 2021,10(5): 1103-1107. |
[45] | SHI W P , ZHOU X B , JIA L Q ,et al. Enhanced secure wireless information and power transfer via intelligent reflecting surface[J]. IEEE Communications Letters, 2021,25(4): 1084-1088. |
[46] | 朱政宇, 徐金雷, 孙钢灿 ,等. 基于IRS辅助的SWIPT物联网系统安全波束成形设计[J]. 通信学报, 2021,42(4): 185-193. |
ZHU Z Y , XU J L , SUN G C ,et al. Secure beamforming design for IRS-assisted SWIPT Internet of things system[J]. Journal on Communications, 2021,42(4): 185-193. | |
[47] | WIJEWARDENA M , SAMARASINGHE T , HEMACHANDRA K T ,et al. Physical layer security for intelligent reflecting surface assisted two-way communications[J]. IEEE Communications Letters, 2021,25(7): 2156-2160. |
[48] | FENG B Q , WU Y P , ZHENG M F . Secure transmission strategy for intelligent reflecting surface enhanced wireless system[C]// Proceedings of 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2019: 1-6. |
[49] | LU X B , YANG W W , GUAN X R ,et al. Robust and secure beamforming for intelligent reflecting surface aided mmWave MISO systems[J]. IEEE Wireless Communications Letters, 2020,9(12): 2068-2072. |
[50] | HONG S , PAN C H , REN H ,et al. Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI[J]. IEEE Transactions on Wireless Communications, 2021,20(4): 2487-2501. |
[51] | YU X H , XU D F , SUN Y ,et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020,38(11): 2637-2652. |
[52] | ZHANG Z , ZHANG C S , JIANG C J ,et al. Improving physical layer security for reconfigurable intelligent surface aided NOMA 6G networks[J]. IEEE Transactions on Vehicular Technology, 2021,70(5): 4451-4463. |
[53] | SUN Y F , AN K , LUO J S ,et al. Intelligent reflecting surface enhanced secure transmission against both jamming and eavesdropping attacks[J]. IEEE Transactions on Vehicular Technology, 2021,70(10): 11017-11022. |
[54] | WANG Q , ZHOU F H , HU R Q ,et al. Energy efficient robust beamforming and cooperative jamming design for IRS-assisted MISO networks[J]. IEEE Transactions on Wireless Communications, 2021,20(4): 2592-2607. |
[55] | WANG S L , LI Q . Distributionally robust secure multicast beamforming with intelligent reflecting surface[J]. IEEE Transactions on Information Forensics and Security, 2021,16: 5429-5441. |
[56] | HU S K , WEI Z Q , CAI Y X ,et al. Robust and secure sum-rate maximization for multiuser MISO downlink systems with self-sustainable IRS[J]. IEEE Transactions on Communications, 2021,69(10): 7032-7049. |
[57] | ZOU X Y , CHEN M , HUANG C W ,et al. Secure transmission for intelligent reflecting surface assisted communication with deep learning[C]// Proceedings of 2020 IEEE Globecom Workshops (GC Wkshps. Piscataway:IEEE Press, 2020: 1-6. |
[58] | SONG Y Z , KHANDAKER M R A , TARIQ F ,et al. Truly intelligent reflecting surface-aided secure communication using deep learning[C]// Proceedings of 2021 IEEE 93rd Vehicular Technology Conference. Piscataway:IEEE Press, 2021: 1-6. |
[59] | GUO X F , CHEN Y B , WANG Y . Learning-based robust and secure transmission for reconfigurable intelligent surface aided millimeter wave UAV communications[J]. IEEE Wireless Communications Letters, 2021,10(8): 1795-1799. |
[60] | YANG H L , XIONG Z H , ZHAO J ,et al. Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications[J]. IEEE Transactions on Wireless Communications, 2021,20(1): 375-388. |
[61] | XIU Y , ZHANG Z P . Secure wireless transmission for intelligent reflecting surface-aided millimeter-wave systems[J]. IEEE Access, 2020,8: 192924-192935. |
[62] | WANG H M , BAI J L , DONG L M . Intelligent reflecting surfaces assisted secure transmission without eavesdropper’s CSI[J]. IEEE Signal Processing Letters, 2020,27: 1300-1304. |
[63] | YANG L , YANG J X , XIE W W ,et al. Secrecy performance analysis of RIS-aided wireless communication systems[J]. IEEE Transactions on Vehicular Technology, 2020,69(10): 12296-12300. |
[64] | XU P , CHEN G J , PAN G F ,et al. Ergodic secrecy rate of RIS-assisted communication systems in the presence of discrete phase shifts and multiple eavesdroppers[J]. IEEE Wireless Communications Letters, 2021,10(3): 629-633. |
[65] | TRIGUI I , AJIB W , ZHU W P . Secrecy outage probability and average rate of RIS-aided communications using quantized phases[J]. IEEE Communications Letters, 2021,25(6): 1820-1824. |
[66] | TUAN V P , HONG I P . Secrecy performance analysis and optimization of intelligent reflecting surface-aided indoor wireless communications[J]. IEEE Access, 2020,8: 109440-109452. |
[67] | ZHANG J Y , DU H Y , SUN Q ,et al. Physical layer security enhancement with reconfigurable intelligent surface-aided networks[J]. IEEE Transactions on Information Forensics and Security, 2021,16: 3480-3495. |
[68] | TUAN V P , HONG I P . Enhancing secrecy performance for NOMA systems with intelligent reflecting surface:analysis and optimization[J]. IEEE Access, 2021,9: 99060-99072. |
[69] | AI Y , DEFIGUEIREDO F A P , KONG L ,et al. Secure vehicular communications through reconfigurable intelligent surfaces[J]. IEEE Transactions on Vehicular Technology, 2021,70(7): 7272-7276. |
[70] | KHOSHAFA M H , NGATCHED T M N , AHMED M H . Reconfigura ble intelligent surfaces-aided physical layer security enhancement in D2D underlay communications[J]. IEEE Communications Letters, 2021,25(5): 1443-1447. |
[71] | ZAGHDOUD O , MNAOUER A B , BOUJEMAA H . Intercept probability and secrecy capacity analysis of RIS-based wireless communication with full-duplex receiver[C]// Proceedings of 2021 International Wireless Communications and Mobile Computing (IWCMC). Piscataway:IEEE Press, 2021: 843-848. |
[72] | LYU L , WU Q Q , LI Z ,et al. Secure two-way communications via intelligent reflecting surfaces[J]. IEEE Communications Letters, 2021,25(3): 744-748. |
[73] | LU X , HOSSAIN E , SHAFIQUE T ,et al. Intelligent reflecting surface enabled covert communications in wireless networks[J]. IEEE Network, 2020,34(5): 148-155. |
[74] | WANG C , LI Z , SHI J ,et al. Intelligent reflecting surface-assisted multi-antenna covert communications:joint active and passive beamforming optimization[J]. IEEE Transactions on Communications, 2021,69(6): 3984-4000. |
[75] | SI J B , LI Z , ZHAO Y ,et al. Covert transmission assisted by intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021,69(8): 5394-5408. |
[76] | ZHOU X B , YAN S H , WU Q Q ,et al. Intelligent reflecting surface (IRS)-aided covert wireless communication with delay constraint[J]. IEEE Transactions on Wireless Communications, 2020,21(1): 532-547. |
[77] | LYU L , WU Q Q , LI Z ,et al. Covert communication in intelligent reflecting surface-assisted NOMA systems:design,analysis,and optimization[J]. IEEE Transactions on Wireless Communications, 2021:doi.org/10.1109/TWC.2021.3106346. |
[78] | KONG J , DAGEFUS F T , CHOI J ,et al. Intelligent reflecting surface assisted covert communication with transmission probability optimization[J]. IEEE Wireless Communications Letters, 2021,10(8): 1825-1829. |
[79] | WU C Y , YAN S H , ZHOU X B ,et al. Intelligent reflecting surface (IRS)-aided covert communication with warden’s statistical CSI[J]. IEEE Wireless Communications Letters, 2021,10(7): 1449-1453. |
[80] | JI Z J , YEOH P L , ZHANG D Y ,et al. Secret key generation for intelligent reflecting surface assisted wireless communication networks[J]. IEEE Transactions on Vehicular Technology, 2021,70(1): 1030-1034. |
[81] | HU X Y , JIN L , HUANG K Z ,et al. Intelligent reflecting surface-assisted secret key generation with discrete phase shifts in static environment[J]. IEEE Wireless Communications Letters, 2021,10(9): 1867-1870. |
[82] | LIU Y , WANG M , XU J ,et al. Boosting secret key generation for IRS-assisted symbiotic radio communications[C]// Proceedings of 2021 IEEE 93rd Vehicular Technology Conference. Piscataway:IEEE Press, 2021: 1-6. |
[83] | JI Z J , YEOH P L , CHEN G J ,et al. Random shifting intelligent re flecting surface for OTP encrypted data transmission[J]. IEEE Wireless Communications Letters, 2021,10(6): 1192-1196. |
[84] | BEREYHI A , ASAAD S , MüLLER R R ,et al. Secure transmission in IRS-assisted MIMO systems with active eavesdroppers[C]// Proceedings of 2020 54th Asilomar Conference on Signals,Systems,and Computers. Piscataway:IEEE Press, 2020: 718-725. |
[85] | HUANG K W , WANG H M . Intelligent reflecting surface aided pilot contamination attack and its countermeasure[J]. IEEE Transactions on Wireless Communications, 2021,20(1): 345-359. |
[86] | WU X W , MA J X , XING Z ,et al. Secure and energy efficient transmission for IRS-assisted cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2021:doi.org/10.1109/TCCN.2021.3114176. |
[87] | LI B G , WU W J , LI Y H ,et al. Intelligent reflecting surface and artificial noise assisted secure transmission of MEC system[J]. IEEE Internet of Things Journal, 2021:doi.org/10.1109/JIOT.2021.3127534. |
[88] | CHEN X , ZHENG T X , DONG L M ,et al. Enhancing MIMO covert communications via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2022,11(1): 33-37. |
[89] | MA S , ZHANG Y Q , LI H ,et al. Covert beamforming design for intelligent reflecting surface assisted IoT networks[J]. IEEE Internet of Things Journal, 2021:doi.org/10.1109/JIOT.2021.3109746. |
[90] | LU T Y , CHEN L Q , ZHANG J Q ,et al. Reconfigurable intelligent surface assisted secret key generation in quasi-static environments[J]. IEEE Communications Letters, 2021:doi.org/10.1109/LCOMM.2021.3130635. |
[91] | YANG J , JI X S , WANG F H ,et al. A novel pilot spoofing scheme via intelligent reflecting surface based on statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2021,70(12): 12847-12857. |
[92] | ALEXANDROPOULOS G C , KATSANOS K , WEN M W ,et al. Safeguarding MIMO communications with reconfigurable metasurfaces and artificial noise[C]// Proceedings of ICC 2021-IEEE International Conference on Communications. Piscataway:IEEE Press, 2021: 1-6. |
[1] | 陈炜宇, 骆俊杉, 王方刚, 丁海洋, 王世练, 夏国江. 无线隐蔽通信容量限与实现技术综述[J]. 通信学报, 2022, 43(8): 203-218. |
[2] | 李中捷, 熊吉源, 高伟, 韦金迎. 分布式IRS辅助毫米波MU-MISO系统联合波束成形设计[J]. 通信学报, 2022, 43(4): 216-226. |
[3] | 张钰, 赵雄文, 王晓晴, 耿绥燕, 秦鹏, 周振宇. 多载波NOMA安全通信系统稳健性资源分配算法[J]. 通信学报, 2022, 43(3): 42-52. |
[4] | 孙巍, 宋清洋, 郭磊. 智能反射表面辅助的无线携能通信网络资源分配算法[J]. 通信学报, 2022, 43(2): 34-43. |
[5] | 张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199-212. |
[6] | 景小荣, 宋振远, 高维, 雷维嘉, 陈前斌. 智能反射表面辅助的MISO通信系统的物理层安全设计方案[J]. 通信学报, 2022, 43(1): 117-126. |
[7] | 李赞, 胡俊凡, 李兵, 石嘉, 司江勃. 基于正交时频空技术的低轨卫星通信的安全分析[J]. 通信学报, 2021, 42(8): 25-32. |
[8] | 崔高峰, 徐媛媛, 张尚宏, 王卫东. 基于最小能耗的多无人机无线网络安全数据卸载策略[J]. 通信学报, 2021, 42(5): 51-62. |
[9] | 傅友华, 陈栋. 混合智能反射表面结构辅助的毫米波通信信道估计[J]. 通信学报, 2021, 42(10): 189-196. |
[10] | 任品毅,许茜. 基于移动边缘计算的时延能耗最小化安全传输[J]. 通信学报, 2020, 41(11): 52-63. |
[11] | 雷维嘉,周洋,谢显中,雷宏江. MIMO全双工双向安全通信系统的预编码矩阵设计[J]. 通信学报, 2020, 41(10): 156-171. |
[12] | 邓浩,王慧明. 人工噪声策略的临界信噪比和功率分配研究[J]. 通信学报, 2019, 40(6): 66-73. |
[13] | 钟州,张波,戚晓慧,黄开枝. 多天线全双工中继辅助的异构蜂窝网物理层安全性能分析[J]. 通信学报, 2019, 40(5): 24-31. |
[14] | 张波,黄开枝,钟州,陈亚军. 异构携能通信网络中人工噪声辅助的顽健能量与信息安全传输方案[J]. 通信学报, 2019, 40(3): 60-72. |
[15] | 马克明,陈亚军,胡鑫,黄开枝,季新生. 面向物联网无线携能通信系统的机会安全传输方案[J]. 通信学报, 2019, 40(2): 70-81. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|