通信学报 ›› 2022, Vol. 43 ›› Issue (8): 203-218.doi: 10.11959/j.issn.1000-436x.2022153
陈炜宇1, 骆俊杉1, 王方刚2, 丁海洋3, 王世练1, 夏国江4
修回日期:
2022-06-13
出版日期:
2022-08-25
发布日期:
2022-08-01
作者简介:
陈炜宇(1996- ),男,福建龙岩人,国防科技大学博士生,主要研究方向为无线隐蔽通信、无源寄生通信基金资助:
Weiyu CHEN1, Junshan LUO1, Fanggang WANG2, Haiyang DING3, Shilian WANG1, Guojiang XIA4
Revised:
2022-06-13
Online:
2022-08-25
Published:
2022-08-01
Supported by:
摘要:
梳理无线隐蔽通信与相关概念的区别和联系,聚焦基于假设检验理论和信息论的无线隐蔽通信研究,介绍了基本研究模型与具体模型分类,分容量限和实现技术两部分对现有工作进行综述。前者依据极限速率的量级,将极限速率揭示工作分均方根速率和非零正速率两类进行综述;后者依据应用场景的不同,对无线隐蔽通信系统性能分析与实现方案优化工作进行分类和综述。最后,探讨了具有高价值的潜在研究方向。
中图分类号:
陈炜宇, 骆俊杉, 王方刚, 丁海洋, 王世练, 夏国江. 无线隐蔽通信容量限与实现技术综述[J]. 通信学报, 2022, 43(8): 203-218.
Weiyu CHEN, Junshan LUO, Fanggang WANG, Haiyang DING, Shilian WANG, Guojiang XIA. Survey of capacity limits and implementation techniques in wireless covert communication[J]. Journal on Communications, 2022, 43(8): 203-218.
表1
适用均方根定律的重要工作及其核心贡献总结"
文献 | 核心贡献 | 信道模型 |
文献[ | 均方根定律 | AWGN |
文献[ | 天线数对隐蔽通信速率极限的影响 | MIMO AWGN |
文献[ | 不需要密钥,一阶隐蔽容量 | BSC(Bob信道优于Willie) |
文献[ | 最小所需密钥量关于符号数的阶数 | DMC/AWGN |
文献[ | 相对熵约束下的一阶隐蔽容量 | DMC/AWGN |
文献[ | 相对熵约束下的一阶隐蔽容量 | 瑞利快衰落 |
文献[ | 相对熵约束下的一阶隐蔽密钥生成容量 | DMC |
文献[ | 不同隐蔽指标约束下的一阶、二阶隐蔽容量 | 二元输入DMC |
文献[ | 一阶容量可达的低复杂度编码方案(多进制) | 二元输入DMC |
文献[ | 一阶容量可达的低复杂度编码方案(二进制) | 二元输入DMC |
文献[ | 一阶容量可达的低复杂度编码方案 | AWGN |
文献[ | 相对熵约束下的一阶容量域 | 二元输入DMC多址接入信道 |
文献[ | 相对熵约束下的一阶容量域 | DMC/AWGN广播信道 |
文献[ | 相对熵约束下的一阶容量域 | DMC/AWGN多收发对互扰信道 |
[1] | 王安, 葛婧, 商宁 ,等. 侧信道分析实用案例概述[J]. 密码学报, 2018,5(4): 383-398. |
WANG A , GE J , SHANG N ,et al. Practical cases of side-channel analysis[J]. Journal of Cryptologic Research, 2018,5(4): 383-398. | |
[2] | LIU Y L , CHEN H H , WANG L M . Physical layer security for next generation wireless networks:theories,technologies,and challenges[J]. IEEE Communications Surveys & Tutorials, 2017,19(1): 347-376. |
[3] | BASH B A , GOECKEL D , TOWSLEY D ,et al. Hiding information in noise:fundamental limits of covert wireless communication[J]. IEEE Communications Magazine, 2015,53(12): 26-31. |
[4] | ZANDER S , ARMITAGE G , BRANCH P . A survey of covert channels and countermeasures in computer network protocols[J]. IEEE Communications Surveys & Tutorials, 2007,9(3): 44-57. |
[5] | DILLARD R A . Detectability of spread-spectrum signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979,AES-15(4): 526-537. |
[6] | 牟青 . 直接序列扩频信号的截获分析研究[D]. 成都:电子科技大学, 2010. |
MOU Q . A study on interception and analysis of direct-sequence spread-spectrum signals[D]. Chengdu:University of Electronic Science and Technology of China, 2010. | |
[7] | HEIDARI-BATENI G , MCGILLEM C D . Chaotic sequences for spread spectrum:an alternative to PN-sequences[C]// Proceedings of IEEE International Conference on Selected Topics in Wireless Communications. Piscataway:IEEE Press, 1992: 437-440. |
[8] | HEIDARI-BATENI G , MCGILLEM C D . A chaotic direct-sequence spread-spectrum communication system[J]. IEEE Transactions on Communications, 1994,42(234): 1524-1527. |
[9] | SEDAGHATNEJAD S , FARHANG M . Detectability of chaotic direct-sequence spread-spectrum signals[J]. IEEE Wireless Communications Letters, 2015,4(6): 589-592. |
[10] | 张晓彤 . 时宽和波形基联合捷变的LPD通信波形设计与性能分析[D]. 哈尔滨:哈尔滨工程大学, 2020. |
ZHANG X T . Design and analysis of LPD communication waveforms based on joint-agility of time-width and waveform bases[D]. Harbin:Harbin Engineering University, 2020. | |
[11] | DIAMANT R , LAMPE L . Low probability of detection for underwater acoustic communication:a review[J]. IEEE Access, 2018,6: 19099-19112. |
[12] | BASH B A , GOECKEL D , TOWSLEY D . Limits of reliable communication with low probability of detection on AWGN channels[J]. IEEE Journal on Selected Areas in Communications, 2013,31(9): 1921-1930. |
[13] | 赵华, 林钰达, 金梁 ,等. 隐蔽无线通信综述[J]. 信息工程大学学报, 2020,21(5): 520-525. |
ZHAO H , LIN Y D , JIN L ,et al. Covert wireless communication:a review[J]. Journal of Information Engineering University, 2020,21(5): 520-525. | |
[14] | 戴跃伟, 刘光杰, 曹鹏程 ,等. 无线隐蔽通信研究综述[J]. 南京信息工程大学学报(自然科学版), 2020,12(1): 45-56. |
DAI Y W , LIU G J , CAO P C ,et al. A survey of wireless covert communications[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2020,12(1): 45-56. | |
[15] | MAKHDOOM I , ABOLHASAN M , LIPMAN J . A comprehensive survey of covert communication techniques,limitations and future challenges[J]. Computers & Security, 2022,120:102784. |
[16] | LEHMANN E L , ROMANO J P . Testing statistical hypotheses[M]. Berlin: Springer, 2005. |
[17] | YAN S H , CONG Y R , HANLY S V ,et al. Gaussian signalling for covert communications[J]. IEEE Transactions on Wireless Commun ications, 2019,18(7): 3542-3553. |
[18] | LI K , SOBERS T V , TOWSLEY D ,et al. Covert communication in continuous-time systems in the presence of a jammer[J]. IEEE Transactions on Wireless Communications, 2022,21(7): 4883-4897. |
[19] | CHEN W Y , DING H Y , WANG S L ,et al. On the limits of covert ambient backscatter communications[J]. IEEE Wireless Communications Letters, 2022,11(2): 308-312. |
[20] | CORMEN T H , LEISERSON C E , RIVEST R L ,et al. Introduction to algorithms[M]. Massachusetts: MIT Press, 2007. |
[21] | ABDELAZIZ A , KOKSAL C E . Fundamental limits of covert communication over MIMO AWGN channel[C]// Proceedings of IEEE Conference on Communications and Network Security. Piscataway:IEEE Press, 2017: 1-9. |
[22] | CHE P H , BAKSHI M , JAGGI S . Reliable deniable communication:hiding messages in noise[C]// Proceedings of 2013 IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2013: 2945-2949. |
[23] | BLOCH M R . Covert communication over noisy channels:a resolvability perspective[J]. IEEE Transactions on Information Theory, 2016,62(5): 2334-2354. |
[24] | WANG L G , WORNELL G W , ZHENG L Z . Fundamental limits of communication with low probability of detection[J]. IEEE Transactions on Information Theory, 2016,62(6): 3493-3503. |
[25] | TAHMASBI M , SAVARD A , BLOCH M R . Covert capacity of non-coherent Rayleigh-fading channels[J]. IEEE Transactions on Information Theory, 2020,66(4): 1979-2005. |
[26] | TAHMASBI M , BLOCH M R . Covert secret key generation[C]// Proceedings of 2017 IEEE Conference on Communications and Network Security. Piscataway:IEEE Press, 2017: 540-544. |
[27] | TAHMASBI M , BLOCH M R . First- and second-order asymptotics in covert communication[J]. IEEE Transactions on Information Theory, 2019,65(4): 2190-2212. |
[28] | BLOCH M R , GUHA S . Optimal covert communications using pulse-position modulation[C]// Proceedings of IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2017: 2825-2829. |
[29] | KADAMPOT I A , TAHMASBI M , BLOCH M R . Multilevel-coded pulse-position modulation for covert communications over binary-input discrete memoryless channels[J]. IEEE Transactions on Information Theory, 2020,66(10): 6001-6023. |
[30] | KADAMPOT I A , TAHMASBI M , BLOCH M R . Codes for covert communication over additive white Gaussian noise channels[C]// Proceedings of IEEE International Symposium on Information Theory. Piscataway:IEEE Press, 2019: 977-981. |
[31] | ARUMUGAM K S K , BLOCH M R . Covert communication over a k-user multiple-access channel[J]. IEEE Transactions on Information Theory, 2019,65(11): 7020-7044. |
[32] | TAN V Y F , LEE S H . Time-division is optimal for covert communication over some broadcast channels[J]. IEEE Transactions on Information Forensics and Security, 2019,14(5): 1377-1389. |
[33] | CHO K H , LEE S H . Treating interference as noise is optimal for covert communication over interference channels[C]// Proceedings of 2020 IEEE International Symposium on Information Theory (ISIT). Piscataway:IEEE Press, 2020: 816-821. |
[34] | HE B , YAN S H , ZHOU X Y ,et al. On covert communication with noise uncertainty[J]. IEEE Communications Letters, 2017,21(4): 941-944. |
[35] | SOBERS T V , BASH B A , GUHA S ,et al. Covert communication in the presence of an uninformed jammer[J]. IEEE Transactions on Wireless Communications, 2017,16(9): 6193-6206. |
[36] | SOLTANI R , GOECKEL D , TOWSLEY D ,et al. Covert wireless communication with artificial noise generation[J]. IEEE Transactions on Wireless Communications, 2018,17(11): 7252-7267. |
[37] | LEE S H , WANG L G , KHISTI A ,et al. Covert communication with channel-state information at the transmitter[J]. IEEE Transactions on Information Forensics and Security, 2018,13(9): 2310-2319. |
[38] | BASH B A , GOECKEL D , TOWSLEY D . Covert communication gains from adversary’s ignorance of transmission time[J]. IEEE Transactions on Wireless Communications, 2016,15(12): 8394-8405. |
[39] | BENDARY A , ABDELAZIZ A , KOKSAL C E . Achieving positive covert capacity over MIMO AWGN channels[J]. IEEE Journal on Selected Areas in Information Theory, 2021,2(1): 149-162. |
[40] | YAN S H , HE B , ZHOU X Y ,et al. Delay-intolerant covert communications with either fixed or random transmit power[J]. IEEE Transactions on Information Forensics and Security, 2019,14(1): 129-140. |
[41] | SHAHZAD K , ZHOU X Y . Covert wireless communications under quasi-static fading with channel uncertainty[J]. IEEE Transactions on Information Forensics and Security, 2021,16: 1104-1116. |
[42] | YU X C , LUO Y , CHEN W . Covert communication with beamforming over MISO channels in the finite blocklength regime[J]. Science China Information Sciences, 2021,64(9): 183-197. |
[43] | 林钰达, 金梁, 周游 ,等. 噪声不确定时基于波束成形的隐蔽无线通信性能分析[J]. 通信学报, 2020,41(7): 49-58. |
LIN Y D , JIN L , ZHOU Y ,et al. Performance analysis of covert wireless communication based on beam forming with noise uncertainty[J]. Journal on Communications, 2020,41(7): 49-58. | |
[44] | 林钰达, 金梁, 黄开枝 ,等. 基于3D波束成形的隐蔽无线通信威胁区域构建[J]. 中国科学:信息科学, 2021,51(8): 1360-1374. |
LIN Y D , JIN L , HUANG K Z ,et al. Threat region development of covert wireless communication based on 3D beamforming[J]. Scientia Sinica (Informationis), 2021,51(8): 1360-1374. | |
[45] | SHAHZAD K , ZHOU X Y , YAN S H . Covert wireless communication in presence of a multi-antenna adversary and delay constraints[J]. IEEE Transactions on Vehicular Technology, 2019,68(12): 12432-12436. |
[46] | EVERETT E , SAHAI A , SABHARWAL A . Passive self-interference suppression for full-duplex infrastructure nodes[J]. IEEE Transactions on Wireless Communications, 2014,13(2): 680-694. |
[47] | SHAHZAD K , ZHOU X Y , YAN S H ,et al. Achieving covert wireless communications using a full-duplex receiver[J]. IEEE Transactions on Wireless Communications, 2018,17(12): 8517-8530. |
[48] | SHU F , XU T Z , HU J S ,et al. Delay-constrained covert communications with a full-duplex receiver[J]. IEEE Wireless Communications Letters, 2019,8(3): 813-816. |
[49] | HE B , YAN S H , ZHOU X Y ,et al. Covert wireless communication with a Poisson field of interferers[J]. IEEE Transactions on Wireless Communications, 2018,17(9): 6005-6017. |
[50] | ZHENG T X , WANG H M , NG D W K ,et al. Multi-antenna covert communications in random wireless networks[J]. IEEE Transactions on Wireless Communications, 2019,18(3): 1974-1987. |
[51] | LIU Z H , LIU J J , ZENG Y ,et al. Covert wireless communication in IoT network:from AWGN channel to THz band[J]. IEEE Internet of Things Journal, 2020,7(4): 3378-3388. |
[52] | JIANG Y E , WANG L M , CHEN H H . Covert communications in D2D underlaying cellular networks with antenna array assisted artificial noise transmission[J]. IEEE Transactions on Vehicular Technology, 2020,69(3): 2980-2992. |
[53] | 李赞, 廖晓闽, 石嘉 ,等. 面向认知物联网的隐蔽通信智能功率控制[J]. 物联网学报, 2020,4(1): 52-58. |
LI Z , LIAO X M , SHI J ,et al. Intelligent power control for covert communication in cognitive Internet of things[J]. Chinese Journal on Internet of Things, 2020,4(1): 52-58. | |
[54] | JIANG X , CHEN X Y , TANG J ,et al. Covert communication in UAV-assisted air-ground networks[J]. IEEE Wireless Communications, 2021,28(4): 190-197. |
[55] | ZHOU X B , YAN S H , HU J S ,et al. Joint optimization of a UAV’s trajectory and transmit power for covert communications[J]. IEEE Transactions on Signal Processing, 2019,67(16): 4276-4290. |
[56] | YAN S H , HANLY S V , COLLINGS I B . Optimal transmit power and flying location for UAV covert wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2021,39(11): 3321-3333. |
[57] | HU J S , WU Y P , CHEN R Q ,et al. Optimal detection of UAV’s transmission with beam sweeping in covert wireless networks[J]. IEEE Transactions on Vehicular Technology, 2020,69(1): 1080-1085. |
[58] | ZHOU X B , YAN S H , SHU F ,et al. UAV-enabled covert wireless data collection[J]. IEEE Journal on Selected Areas in Communications, 2021,39(11): 3348-3362. |
[59] | CHEN X Y , SHENG M , ZHAO N ,et al. UAV-relayed covert communication towards a flying warden[J]. IEEE Transactions on Communications, 2021,69(11): 7659-7672. |
[60] | SHEIKHOLESLAMI A , GHADERI M , TOWSLEY D ,et al. Multi-hop routing in covert wireless networks[J]. IEEE Transactions on Wireless Communications, 2018,17(6): 3656-3669. |
[61] | WANG H M , ZHANG Y , ZHANG X ,et al. Secrecy and covert communications against UAV surveillance via multi-hop networks[J]. IEEE Transactions on Communications, 2020,68(1): 389-401. |
[62] | RENZO D M , ZAPPONE A , DEBBAH M ,et al. Smart radio environments empowered by reconfigurable intelligent surfaces:how it works,state of research,and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020,38(11): 2450-2525. |
[63] | 卢汉成, 王亚正, 赵丹 ,等. 智能反射表面辅助的无线通信系统的物理层安全综述[J]. 通信学报, 2022,43(2): 171-184. |
LU H C , WANG Y Z , ZHAO D ,et al. Survey of physical layer security of intelligent reflecting surface-assisted wireless communication systems[J]. Journal on Communications, 2022,43(2): 171-184. | |
[64] | LU X , HOSSAIN E , SHAFIQUE T ,et al. Intelligent reflecting surface enabled covert communications in wireless networks[J]. IEEE Network, 2020,34(5): 148-155. |
[65] | WU C Y , YAN S H , ZHOU X B ,et al. Intelligent reflecting surface (IRS)-aided covert communication with warden’s statistical CSI[J]. IEEE Wireless Communications Letters, 2021,10(7): 1449-1453. |
[66] | KONG J , DAGEFUS F T , CHOI J ,et al. Intelligent reflecting surface assisted covert communication with transmission probability optimization[J]. IEEE Wireless Communications Letters, 2021,10(8): 1825-1829. |
[67] | ZHOU X B , YAN S H , WU Q Q ,et al. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint[J]. IEEE Transactions on Wireless Communications, 2022,21(1): 532-547. |
[68] | SI J B , LI Z , ZHAO Y ,et al. Covert transmission assisted by intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021,69(8): 5394-5408. |
[69] | WANG C , LI Z , SHI J ,et al. Intelligent reflecting surface-assisted multi-antenna covert communications:joint active and passive beamforming optimization[J]. IEEE Transactions on Communications, 2021,69(6): 3984-4000. |
[70] | CHEN X , ZHENG T X , DONG L M ,et al. Enhancing MIMO covert communications via intelligent reflecting surface[J]. IEEE Wireless Communications Letters, 2022,11(1): 33-37. |
[71] | ZHENG M F , HAMILTON A , LING C . Covert communications with a full-duplex receiver in non-coherent Rayleigh fading[J]. IEEE Transactions on Communications, 2021,69(3): 1882-1895. |
[72] | AGHDAM S R , DUMAN T M . Joint precoder and artificial noise design for MIMO wiretap channels with finite-alphabet inputs based on the cut-off rate[J]. IEEE Transactions on Wireless Communications, 2017,16(6): 3913-3923. |
[73] | KANG X , LIANG Y C , YANG J . Riding on the primary:a new spectrum sharing paradigm for wireless-powered IoT devices[C]// Proceedings of 2017 IEEE International Conference on Communications. Piscataway:IEEE Press, 2017: 1-6. |
[74] | GUO S S , LV S H , ZHANG H X ,et al. Reflecting modulation[J]. IEEE Journal on Selected Areas in Communications, 2020,38(11): 2548-2561. |
[75] | HU J S , YAN S H , ZHOU X Y ,et al. Covert wireless communications with channel inversion power control in Rayleigh fading[J]. IEEE Transactions on Vehicular Technology, 2019,68(12): 12135-12149. |
[76] | HU J S , YAN S H , ZHOU X B ,et al. Covert communications without channel state information at receiver in IoT systems[J]. IEEE Internet of Things Journal, 2020,7(11): 11103-11114. |
[77] | SUN L L , XU T Z , YAN S H ,et al. On resource allocation in covert wireless communication with channel estimation[J]. IEEE Transactions on Communications, 2020,68(10): 6456-6469. |
[78] | 李啸天, 雷菁, 刘伟 ,等. 平坦慢衰落信道下基于HOS的PSK调制盲信道估计[J]. 通信学报, 2015,36(5): 144-151. |
LI X T , LEI J , LIU W ,et al. High-order statistics based blind channel estimation for PSK modulation in flat and slow fading channels[J]. Journal on Communications, 2015,36(5): 144-151. | |
[79] | HUANG K W , WANG H M , TOWSLEY D ,et al. LPD communication:a sequential change-point detection perspective[J]. IEEE Transactions on Communications, 2020,68(4): 2474-2490. |
[80] | HUANG K W , WANG H M , POOR H V . On covert communication against sequential change-point detection[J]. IEEE Transactions on Information Theory, 2021,67(11): 7285-7303. |
[1] | 张钰, 赵雄文, 王晓晴, 耿绥燕, 秦鹏, 周振宇. 多载波NOMA安全通信系统稳健性资源分配算法[J]. 通信学报, 2022, 43(3): 42-52. |
[2] | 卢汉成, 王亚正, 赵丹, 罗涛, 吴俊. 智能反射表面辅助的无线通信系统的物理层安全综述[J]. 通信学报, 2022, 43(2): 171-184. |
[3] | 景小荣, 宋振远, 高维, 雷维嘉, 陈前斌. 智能反射表面辅助的MISO通信系统的物理层安全设计方案[J]. 通信学报, 2022, 43(1): 117-126. |
[4] | 李赞, 胡俊凡, 李兵, 石嘉, 司江勃. 基于正交时频空技术的低轨卫星通信的安全分析[J]. 通信学报, 2021, 42(8): 25-32. |
[5] | 崔高峰, 徐媛媛, 张尚宏, 王卫东. 基于最小能耗的多无人机无线网络安全数据卸载策略[J]. 通信学报, 2021, 42(5): 51-62. |
[6] | 张晗,胡永进,郭渊博,陈吉成. 信息安全领域内实体共指消解技术研究[J]. 通信学报, 2020, 41(2): 165-175. |
[7] | 任品毅,许茜. 基于移动边缘计算的时延能耗最小化安全传输[J]. 通信学报, 2020, 41(11): 52-63. |
[8] | 雷维嘉,周洋,谢显中,雷宏江. MIMO全双工双向安全通信系统的预编码矩阵设计[J]. 通信学报, 2020, 41(10): 156-171. |
[9] | 邓浩,王慧明. 人工噪声策略的临界信噪比和功率分配研究[J]. 通信学报, 2019, 40(6): 66-73. |
[10] | 钟州,张波,戚晓慧,黄开枝. 多天线全双工中继辅助的异构蜂窝网物理层安全性能分析[J]. 通信学报, 2019, 40(5): 24-31. |
[11] | 张波,黄开枝,钟州,陈亚军. 异构携能通信网络中人工噪声辅助的顽健能量与信息安全传输方案[J]. 通信学报, 2019, 40(3): 60-72. |
[12] | 马克明,陈亚军,胡鑫,黄开枝,季新生. 面向物联网无线携能通信系统的机会安全传输方案[J]. 通信学报, 2019, 40(2): 70-81. |
[13] | 郭文博,宋长庆,文荣,赵宏志,唐友喜. 不完美时间同步下物理层安全协同干扰功率分配[J]. 通信学报, 2019, 40(11): 86-93. |
[14] | 王伟,李鑫睿,殷柳国,章国安,张士兵. 联合能量收集中继与全双工目的节点的安全资源分配方案[J]. 通信学报, 2019, 40(1): 110-118. |
[15] | 王伟, 李鑫睿, 殷柳国, 章国安, 张士兵. 联合能量收集中继与全双工目的节点的安全资源分配方案[J]. 通信学报, 2018, 99(99): 1-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|