[9] |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553): 436-444.
|
[10] |
HADSELL R , CHOPRA S , LECUN Y . Dimensionality reduction by learning an invariant mapping[C]// Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2006: 1735-1742.
|
[11] |
HINTON G , VINYALS O , DEAN J . Distilling the knowledge in a neural network[J]. arXiv Preprint,arXiv:1503.02531, 2015.
|
[12] |
王一丰, 郭渊博, 陈庆礼 ,等. 基于对比学习的细粒度未知恶意流量分类方法[J]. 通信学报, 2022,43(10): 12-25.
|
|
WANG Y F , GUO Y B , GHEN Q L ,et al. Method based on contrastive learning for fine-grained unknown malicious traffic classification[J]. Journal on Communications, 2022,43(10): 12-25.
|
[13] |
KINGMA D P , WELLING M . Auto-encoding variational Bayes[J]. arXiv Preprint,arXiv:1312.6114, 2013.
|
[14] |
LIU W Y , WEN Y D , YU Z D ,et al. SphereFace:deep hypersphere embedding for face recognition[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 6738-6746.
|
[15] |
HAAN L D , FERREIRA A . Extreme value theory:an introduction[M]. New York: Springer, 2006.
|
[16] |
DONG B , WANG X . Comparison deep learning method to traditional methods using for network intrusion detection[C]// Proceedings of 2016 8th IEEE International Conference on Communication Software and Networks. Piscataway:IEEE Press, 2016: 581-585.
|
[17] |
CRUZ S , COLEMAN C , RUDD E M ,et al. Open set intrusion recognition for fine-grained attack categorization[C]// Proceedings of 2017 IEEE International Symposium on Technologies for Homeland Security. Piscataway:IEEE Press, 2017: 1-6.
|
[18] |
HENRYDOSS J , CRUZ S , RUDD E M ,et al. Incremental open set intrusion recognition using extreme value machine[C]// Proceedings of 2017 16th IEEE International Conference on Machine Learning and Applications. Piscataway:IEEE Press, 2018: 1089-1093.
|
[19] |
MALLYA A , LAZEBNIK S . PackNet:adding multiple tasks to a single network by iterative pruning[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 7765-7773.
|
[1] |
SOYSAL M , SCHMIDT E G . Machine learning algorithms for accurate flow-based network traffic classification:evaluation and comparison[J]. Performance Evaluation, 2010,67(6): 451-467.
|
[2] |
DUSI M , GRINGOLI F , SALGARELLI L . Quantifying the accuracy of the ground truth associated with Internet traffic traces[J]. Computer Networks, 2011,55(5): 1158-1167.
|
[20] |
LI Z Z , HOIEM D . Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(12): 2935-2947.
|
[21] |
RANNEN A , ALJUNDI R , BLASCHKO M B ,et al. Encoder based lifelong learning[C]// Proceedings of IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 1329-1337.
|
[3] |
陈明豪, 祝跃飞, 芦斌 ,等. 基于attention-CNN的加密流量应用类型识别[J]. 计算机科学, 2021,48(4): 325-332.
|
|
CHEN M H , ZHU Y F , LU B ,et al. Classification of application type of encrypted traffic based on attention-CNN[J]. Computer Science, 2021,48(4): 325-332.
|
[22] |
ZHANG J T , ZHANG J , GHOSH S ,et al. Class-incremental learning via deep model consolidation[C]// Proceedings of IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE Press, 2020: 1120-1129.
|
[23] |
REBUFFI S A , KOLESNIKOV A , SPERL G ,et al. ICARL:incremental classifier and representation learning[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2017: 2001-2010.
|
[4] |
TING C , FIELD R , FISHER A ,et al. Compression analytics for classification and anomaly detection within network communication[J]. IEEE Transactions on Information Forensics and Security, 2019,14(5): 1366-1376.
|
[5] |
YANG J , CHEN X , CHEN S W ,et al. Conditional variational auto-encoder and extreme value theory aided two-stage learning approach for intelligent fine-grained known/unknown intrusion detection[J]. IEEE Transactions on Information Forensics and Security, 2021,16: 3538-3553.
|
[24] |
ROLNICK D , AHUJA A , SCHWARZ J ,et al. Experience replay for continual learning[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Massachusetts:MIT Press, 2019: 350-360.
|
[25] |
SOHN K , . Improved deep metric learning with multi-class n-pair loss objective[C]// Proceedings of International Conference on Neural Information Processing Systems. Massachusetts:MIT Press, 2016:29.
|
[6] |
CASTRO F M , MARíN-JIMéNEZ M J , GUIL N ,et al. End-to-end incremental learning[C]// Proceedings of the European Conference on Computer Vision. New York:ACM Press, 2018: 233-248.
|
[7] |
LANGE D M , ALJUNDI R , MASANA M ,et al. A continual learning survey:defying forgetting in classification tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(7): 3366-3385.
|
[26] |
CHEN T , KORNBLITH S , NOROUZI M ,et al. A simple framework for contrastive learning of visual representations[C]// Proceedings of International Conference on Machine Learning. New York:PMLR, 2020: 1597-1607.
|
[27] |
HE K M , FAN H Q , WU Y X ,et al. Momentum contrast for unsupervised visual representation learning[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2020: 9726-9735.
|
[28] |
HU Q J , WANG X , HU W ,et al. AdCo:adversarial contrast for efficient learning of unsupervised representations from self-trained negative adversaries[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2021: 1074-1083.
|
[29] |
LASHKARI A H , DRAPERGIL G , MAMUN M S I ,et al. Characterization of ToR traffic using time-based features[C]// Proceedings of 3rd International Conference on Information Systems Security and Privacy. New York:ACM Press, 2017: 253-262.
|
[30] |
DOERSCH C . Tutorial on variational autoencoders[J]. arXiv Preprint,arXiv:1606.05908, 2016.
|
[31] |
HIGGINS I , MATTHEY L , PAL A ,et al. Beta-VAE:learning basic visual concepts with a constrained variational frame-work[C]// Proceedings of International Conference on Learning Representations.[S.l.:s.n.], 2017: 1-22.
|
[32] |
OORD V D A , LI Y , VINYALS O . Representation learning with contrastive predictive coding[J]. arXiv Preprint,arXiv:1807.03748, 2018.
|
[33] |
TAVALLAEE M , BAGHERI E , LU W ,et al. A detailed analysis of the KDD CUP 99 data set[C]// Proceedings of 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Piscataway:IEEE Press, 2009: 1-6.
|
[8] |
BUKCHIN G , SCHWARTZ E , SAENKO K ,et al. Fine-grained angular contrastive learning with coarse labels[C]// Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2021: 8726-8736.
|