[1] |
SARABANDI K , BEHDAD N . A frequency selective surface with miniaturized elements[J]. IEEE Transactions on Antennas and Propagation, 2007,55(5): 1239-1245.
|
[2] |
BERRY D , MALECH R , KENNEDY W . The reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 1963,11(6): 645-651.
|
[3] |
KWAN A , DUDLEY J , LANTZ E . Who really discovered Snell’s law?[J]. Physics World, 2002,15(4): 64.
|
[4] |
FERESIDIS A P , GOUSSETIS G , WANG S H ,et al. Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas[J]. IEEE Transactions on Antennas and Propagation, 2005,53(1): 209-215.
|
[5] |
YANG F , RAHMAT-SAMII Y , . Electromagnetic band gap structures in antenna engineering[M]. Cambridge: Cambridge University Press, 2008.
|
[6] |
ENCINAR J A . Design of two-layer printed reflectarrays using patches of variable size[J]. IEEE Transactions on Antennas and Propagation, 2001,49(10): 1403-1410.
|
[7] |
HUANG J , POGORZELSKI R J . A Ka-band microstrip reflectarray with elements having variable rotation angles[J]. IEEE Transactions on Antennas and Propagation, 1998,46(5): 650-656.
|
[8] |
MCGRATH D . Planar three-dimensional constrained lenses[J]. IEEE Transactions on Antennas and Propagation, 1986,34(1): 46-50.
|
[9] |
DATTHANASOMBAT S , PRATA A , ARNARO L R ,et al. Layered lens antennas[C]// Proceedings of IEEE Antennas and Propagation Society International Symposium. Piscataway:IEEE Press, 2001: 777-780.
|
[10] |
YANG X , XU S H , YANG F ,et al. A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements[J]. IEEE Transactions on Antennas and Propagation, 2017,65(8): 3959-3966.
|
[11] |
YANG X , XU S H , YANG F ,et al. A mechanically reconfigurable reflectarray with slotted patches of tunable height[J]. IEEE Antennas and Wireless Propagation Letters, 2018,17(4): 555-558.
|
[12] |
CARRASCO E , TAMAGNONE M , PERRUISSEAU-CARRIER J , . Tunable graphene-based reflectarray element for reconfigurable beams[C]// Proceedings of 2013 7th European Conference on Antennas and Propagation. Piscataway:IEEE Press, 2013: 1779-1782.
|
[13] |
PEREZ-PALOMINO G , BARBA M , ENCINAR J A ,et al. Design and demonstration of an electronically scanned reflectarray antenna at 100 GHz using multiresonant cells based on liquid crystals[J]. IEEE Transactions on Antennas and Propagation, 2015,63(8): 3722-3727.
|
[14] |
TRAMPLER M E , LOVATO R E , GONG X . Dual-resonance continuously beam-scanning X-band reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2020,68(8): 6080-6087.
|
[15] |
TANG J W , XU S H , YANG F ,et al. Design and measurement of a reconfigurable transmitarray antenna with compact varactor-based phase shifters[J]. IEEE Antennas and Wireless Propagation Letters, 2021,20(10): 1998-2002.
|
[16] |
XU H J , XU S H , YANG F ,et al. Design and experiment of a dual-band 1 bit reconfigurable reflectarray antenna with independent large-angle beam scanning capability[J]. IEEE Antennas and Wireless Propagation Letters, 2020,19(11): 1896-1900.
|
[17] |
LUO C W , ZHAO G , JIAO Y C ,et al. Wideband 1 bit reconfigurable transmitarray antenna based on polarization rotation element[J]. IEEE Antennas and Wireless Propagation Letters, 2021,20(5): 798-802.
|
[18] |
DIABY F , CLEMENTE A , SAULEAU R ,et al. 2 bit reconfigurable unit-cell and electronically steerable transmitarray at $Ka$-band[J]. IEEE Transactions on Antennas and Propagation, 2020,68(6): 5003-5008.
|
[19] |
ZHANG Q S , ZHANG M T , SHI X W ,et al. A low-profile beam-steering reflectarray with integrated leaky-wave feed and 2-bit phase resolution for ka-band SatCom[J]. IEEE Transactions on Antennas and Propagation, 2022,70(3): 1884-1894.
|
[20] |
WU B , SUTINJO A , POTTER M E ,et al. On the selection of the number of bits to control a dynamic digital MEMS reflectarray[J]. IEEE Antennas and Wireless Propagation Letters, 2008,7: 183-186.
|
[21] |
YANG H H , YANG F , XU S H ,et al. A study of phase quantization effects for reconfigurable reflectarray antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16: 302-305.
|
[22] |
XI B , XIAO Y , ZHU K Q ,et al. 1-bit wideband reconfigurable reflectarray design in ku-band[J]. IEEE Access, 2022,10: 4340-4348.
|
[23] |
ZHOU S G , ZHAO G , XU H ,et al. A wideband 1-bit reconfigurable reflectarray antenna at ku-band[J]. IEEE Antennas and Wireless Propagation Letters, 2022,21(3): 566-570.
|
[24] |
LUYEN H , ZHANG Z T , BOOSKE J H ,et al. Wideband,beam-steerable reflectarray antennas exploiting electronically reconfigurable polarization-rotating phase shifters[J]. IEEE Transactions on Antennas and Propagation, 2022,70(6): 4414-4425.
|
[25] |
MU Y J , WANG X Y , HUANG M L ,et al. Ultra-wideband 1bit reconfigurable reflectarray based on tight coupling method[C]// Proceedings of 2021 13th International Symposium on Antennas,Propagation and EM Theory. Piscataway:IEEE Press, 2021: 1-3.
|
[26] |
ZHANG Y X , ZHAO Y C , LIANG S X ,et al. Large phase modulation of THz wave via an enhanced resonant active HEMT metasurface[J]. Nanophotonics, 2018,8(1): 153-170.
|
[27] |
ZHAO Y C , ZHANG Y X , SHI Q W ,et al. Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures[J]. ACS Photonics, 2018,5(8): 3040-3050.
|
[28] |
XU H J , XU S H , YANG F ,et al. Design of a terahertz reconfigurable reflectarray with individually controlled 1-bit phasing elements[C]// Proceedings of 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. Piscataway:IEEE Press, 2019: 309-310.
|
[29] |
VENKATESH S , LU X Y , SAEIDI H ,et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips[J]. Nature Electronics, 2020,3(12): 785-793.
|
[30] |
MONROE N M , DOGIAMIS G C , STINGEL R ,et al. Electronic THz pencil beam forming and 2D steering for high angular-resolution operation:a 98-unit 265GHz CMOS reflectarray with in-unit digital beam shaping and squint correction[C]// Proceedings of 2022 IEEE International Solid- State Circuits Conference. Piscataway:IEEE Press, 2022: 1-3.
|
[31] |
CHEN H T , PADILLA W J , ZIDE J M O ,et al. Active terahertz metamaterial devices[J]. Nature, 2006,444(7119): 597-600.
|
[32] |
LIN Q W , WONG H , HUITEMA L ,et al. Coding metasurfaces with reconfiguration capabilities based on optical activation of phase-change materials for terahertz beam manipulations[J]. Advanced Optical Materials, 2022,10(1): 2101699.
|
[33] |
LI Q S , CAI X D , LIU T ,et al. Gate-tuned graphene meta-devices for dynamically controlling terahertz wavefronts[J]. Nanophotonics, 2022,11(9): 2085-2096.
|
[34] |
MOGHADAS H , DANESHMAND M , MOUSAVI P ,et al. Monolithic-integrated MEMS-tunable reflective cell for Ku-band mobile satellite two-way connectivity[J]. IEEE Transactions on Antennas and Propagation, 2015,63(4): 1384-1392.
|
[35] |
NASERI P , RIEL M , DEMERS Y ,et al. A dual-band dual-circularly polarized reflectarray for K/Ka-band space applications[J]. IEEE Transactions on Antennas and Propagation, 2020,68(6): 4627-4637.
|
[36] |
LUO Q , GAO S , LI W T ,et al. Multibeam dual-circularly polarized reflectarray for connected and autonomous vehicles[J]. IEEE Transactions on Vehicular Technology, 2019,68(4): 3574-3585.
|
[37] |
TONG X F , JIANG Z H , LI Y ,et al. Dual-wideband dual-circularly-polarized shared-aperture reflectarrays with a single functional substrate for K-/Ka-band applications[J]. IEEE Transactions on Antennas and Propagation, 2022,70(7): 5404-5417.
|
[38] |
BALADI E , XU M Y , FARIA N ,et al. Dual-band circularly polarized fully reconfigurable reflectarray antenna for satellite applications in the ku-band[J]. IEEE Transactions on Antennas and Propagation, 2021,69(12): 8387-8396.
|
[39] |
SUPREEYATITIKUL N , TORRUNGRUENG D , PHONGCHAROE-NPANICH C , . Quadri-cluster broadband circularly-polarized sequentially-rotated metasurface-based antenna array for C-band satellite communications[J]. IEEE Access, 2021,9: 67015-67027.
|
[40] |
ROTSHILD D , ABRAMOVICH A . Ultra-wideband reconfigurable X-band and Ku-band metasurface beam-steerable reflector for satellite communications[J]. Electronics, 2021,10(17): 2165.
|
[41] |
CUI T J , LIU S , BAI G D ,et al. Direct transmission of digital message via programmable coding metasurface[J]. Research, 2019(1): 1205-1216.
|
[42] |
TANG W K , DAI J Y , CHEN M Z ,et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics Letters, 2019,55(7): 417-420.
|
[43] |
ZHANG L , CHEN M Z , TANG W K ,et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces[J]. Nature Electronics, 2021,4(3): 218-227.
|
[44] |
PAN X T , YANG F , XU S H ,et al. W-band electronic focus-scanning by a reconfigurable transmitarray for millimeter-wave imaging applications[J]. Applied Computational Electromagnetics Society Journal, 2020,35(5): 580-586.
|
[45] |
吴优, 息荣艳, 潘笑天 ,等. 基于相控电磁表面的W波段雷达系统研究[J]. 雷达学报, 2021,10(2): 281-287.
|
|
WU Y , XI R Y , PAN X T ,et al. Research on a phased electromagnetic surface-based W-band radar system[J]. Journal of Radars, 2021,10(2): 281-287.
|
[46] |
HOUGNE P D , FINK M , LEROSEY G . Optimally diverse communication channels in disordered environments with tuned randomness[J]. Nature Electronics, 2019,2(1): 36-41.
|
[47] |
ELMOSSALLAMY M A , ZHANG H L , SULTAN R ,et al. On spatial multiplexing using reconfigurable intelligent surfaces[J]. IEEE Wireless Communications Letters, 2021,10(2): 226-230.
|