通信学报 ›› 2022, Vol. 43 ›› Issue (12): 3-12.doi: 10.11959/j.issn.1000-436x.2022143
• 专题:信息超材料在移动通信中的应用 • 下一篇
吴利杰1,2, 杨汉卿1,2, 程强1,2,3, 崔铁军1,2,3
修回日期:
2022-10-10
出版日期:
2022-12-25
发布日期:
2022-12-01
作者简介:
吴利杰(1997- ),男,浙江丽水人,东南大学博士生,主要研究方向为信息超表面、可重构智能超表面等基金资助:
Lijie WU1,2, Hanqing YANG1,2, Qiang CHENG1,2,3, Tiejun CUI1,2,3
Revised:
2022-10-10
Online:
2022-12-25
Published:
2022-12-01
Supported by:
摘要:
传统信息超表面能对电磁波的幅度和相位做出动态调控,在无线中继中控制电磁波的传播方向,但并不能放大入射波的能量,因此这类超表面的工作距离受限,往往要通过较大的阵面面积来实现信号盲区的有效覆盖。为解决这一问题,提出了一种放大型信息超表面,并通过仿真验证了该信息超表面在2.7~3.1 GHz的宽带范围内具有2 bit的相位调制特性和信号放大能力。同时,通过引入功率分配和功率合成网络,使8个超表面单元组成一个1×8的阵列且只需使用一个放大器,以减少放大器的数量,从而降低硬件成本和系统能耗。仿真结果表明,所提出的放大型信息超表面阵列在宽带范围内同时实现了波束成形和信号能量放大,可应用于基于信息超表面的新型无线中继系统中,为增强无线信号覆盖和减小超表面阵面尺寸提供了一种全新的解决方案。
中图分类号:
吴利杰, 杨汉卿, 程强, 崔铁军. 可增强信号覆盖范围的放大型信息超表面设计[J]. 通信学报, 2022, 43(12): 3-12.
Lijie WU, Hanqing YANG, Qiang CHENG, Tiejun CUI. Design of amplifying information metasurface for enhancing signal coverage[J]. Journal on Communications, 2022, 43(12): 3-12.
表1
不同信息超表面的性能对比"
相关工作 | 工作带宽 | 调相能力 | 放大效果 | 放大器数量 |
文献[ | <5.0% | 2 bit | 无 | 无 |
文献[ | <5.0% | 2 bit | 无 | 无 |
文献[ | 7.7% | 2 bit | 无 | 无 |
文献[ | <5.0% | 2 bit | 无 | 无 |
文献[ | 8.2% | 无 | 0~10 dB | 1个/单元 |
文献[ | <5% | 无 | 0~20 dB | 2个/单元 |
文献[ | 5.5% | 无 | 0~6 dB | 1个/单元 |
文献[ | 6.8% | 无 | 0~20 dB | 1个/单元 |
文献[ | 18.2% | 无 | 0~12 dB | |
本文工作 | 13.7% | 2 bit | 0~13 dB |
[33] | LONG R Z , LIANG Y C , PEI Y Y ,et al. Active reconfigurable intelligent surface-aided wireless communications[J]. IEEE Transactions on Wireless Communications, 2021,20(8): 4962-4975. |
[34] | ZHANG Z J , DAI L L , CHEN X B ,et al. Active RIS vs.Passive RIS:which will prevail in 6G[J]. arXiv Preprint,arXiv:2103.15154, 2021. |
[35] | BIALKOWSKI M E , ROBINSON A W , SONG H J . Design,development,and testing of X-band amplifying reflectarrays[J]. IEEE Transactions on Antennas and Propagation, 2002,50(8): 1065-1076. |
[36] | KISHOR K K , HUM S V . An amplifying reconfigurable reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 2012,60(1): 197-205. |
[37] | YANG X , XU S H , YANG F ,et al. A distributed power-amplifying reflectarray antenna for EIRP boost applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16: 2742-2745. |
[38] | WANG X , HAN J Q , TIAN S C ,et al. Amplification and manipulation of nonlinear electromagnetic waves and enhanced nonreciprocity using transmissive space-time-coding metasurface[J]. Advanced Science, 2022,9(11): 2105960. |
[39] | MA Q , CHEN L , JING H B ,et al. Controllable and programmable nonreciprocity based on detachable digital coding metasurface[J]. Advanced Optical Materials, 2019,7(24): 1901285. |
[40] | QIU T S , JIA Y X , WANG J F ,et al. Controllable reflection-enhancement metasurfaces via amplification excitation of transistor circuit[J]. IEEE Transactions on Antennas and Propagation, 2021,69(3): 1477-1482. |
[1] | YU N F , GENEVET P , KATS M A ,et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011,334(6054): 333-337. |
[2] | CUI T J , QI M Q , WAN X ,et al. Coding metamaterials,digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014,3(10): e218. |
[41] | TARAVATI S , ELEFTHERIADES G V . Full-duplex reflective beamsteering metasurface featuring magnetless nonreciprocal amplification[J]. Nature Communications, 2021,12:4414. |
[42] | WU L J , LOU K , KE J C ,et al. A wideband amplifying reconfigurable intelligent surface[J]. IEEE Transactions on Antennas and Propagation, 2022,70(11): 10623-10631. |
[3] | CUI T J , LIU S , ZHANG L . Information metamaterials and metasurfaces[J]. Journal of Materials Chemistry C, 2017,5(15): 3644-3668. |
[4] | ZHANG L , CHEN X Q , LIU S ,et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018,9:4334. |
[5] | ZHANG L , WU R Y , BAI G D ,et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Advanced Functional Materials, 2018,28(33): 1802205. |
[43] | LUO Z J , WANG Q , ZHANG X G ,et al. Intensity-dependent metasurface with digitally reconfigurable distribution of nonlinearity[J]. Advanced Optical Materials, 2019,7(19): 1900792. |
[44] | LUO Z J , CHEN M Z , WANG Z X ,et al. Digital nonlinear metasurface with customizable nonreciprocity[J]. Advanced Functional Materials, 2019,29(49): 1906635. |
[45] | LUO Z J , REN X Y , ZHOU L ,et al. A high-performance nonlinear metasurface for spatial-wave absorption[J]. Advanced Functional Materials, 2022,32(16): 2109544. |
[46] | LIU C , MA Q , LUO Z J ,et al. A programmable diffractive deep neural network based on a digital-coding metasurface array[J]. Nature Electronics, 2022,5(2): 113-122. |
[6] | DAI J Y , ZHAO J , CHENG Q ,et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface[J]. Light:Science & Applications, 2018,7:90. |
[7] | GAO X , YANG W L , MA H F ,et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018,66(11): 6086-6095. |
[8] | ZHANG L , CHEN X Q , SHAO R W ,et al. Breaking reciprocity with space-time-coding digital metasurfaces[J]. Advanced Materials, 2019,31(41): 1904069. |
[9] | MA Q , BAI G D , JING H B ,et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light:Science & Applications, 2019,8:98. |
[10] | DAI J Y , YANG J , TANG W K ,et al. Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface[J]. Applied Physics Reviews, 2020,7(4): 041408. |
[47] | BILGIC M M , YEGIN K . Wideband high-gain aperture coupled antenna for ku band phased-array systems[J]. Microwave and Optical Technology Letters, 2013,55(6): 1291-1295. |
[48] | KUMAR G , RAY K P . Broadband microstrip antennas:artech house[R]. 2003. |
[49] | PAULA I L D , LEMEY S , BOSMAN D ,et al. Cost-effective high-performance air-filled SIW antenna array for the global 5G 26 GHz and 28 GHz bands[J]. IEEE Antennas and Wireless Propagation Letters, 2021,20(2): 194-198. |
[50] | LIU K Z , ZHANG Z J , DAI L L ,et al. Active reconfigurable intelligent surface:fully-connected or sub-connected?[J]. IEEE Communications Letters, 2022,26(1): 167-171. |
[11] | KE J C , DAI J Y , CHEN M Z ,et al. Linear and nonlinear polarization syntheses and their programmable controls based on anisotropic time-domain digital coding metasurface[J]. Small Structures, 2021,2(1): 2000060. |
[12] | DAI J Y , TANG W K , ZHAO J ,et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019,4(7): 1900044. |
[13] | TANG W K , CHEN M Z , DAI J Y ,et al. Wireless communications with programmable metasurface:new paradigms,opportunities,and challenges on transceiver design[J]. IEEE Wireless Communications, 2020,27(2): 180-187. |
[14] | TANG W K , DAI J Y , CHEN M Z ,et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics Letters, 2019,55(7): 417-420. |
[15] | DAI J Y , TANG W K , YANG L X ,et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2020,68(3): 1618-1627. |
[16] | TANG W K , DAI J Y , CHEN M Z ,et al. MIMO transmission through reconfigurable intelligent surface:system design,analysis,and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020,38(11): 2683-2699. |
[17] | HAN Y , LI X , TANG W K ,et al. Dual-polarized RIS-assisted mobile communications[J]. IEEE Transactions on Wireless Communications, 2022,21(1): 591-606. |
[18] | CHEN M Z , TANG W K , DAI J Y ,et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface[J]. National Science Review, 2021,9(1): 31-41. |
[19] | ZHANG L , CHEN M Z , TANG W K ,et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces[J]. Nature Electronics, 2021,4(3): 218-227. |
[20] | HUANG C X , ZHANG J J , CHENG Q ,et al. Polarization modulation for wireless communications based on metasurfaces[J]. Advanced Functional Materials, 2021,31(36): 2103379. |
[21] | DAI J Y , TANG W K , CHEN M Z ,et al. Wireless communication based on information metasurfaces[J]. IEEE Transactions on Microwave Theory and Techniques, 2021,69(3): 1493-1510. |
[22] | CHEN X Y , KE J C , TANG W K ,et al. Design and implementation of MIMO transmission based on dual-polarized reconfigurable intelligent surface[J]. IEEE Wireless Communications Letters, 2021,10(10): 2155-2159. |
[23] | CUI T J , LIU S , BAI G D ,et al. Direct transmission of digital message via programmable coding metasurface[J]. Research,2019, 2019:2584509. |
[24] | 梁竟程, 陈伟聪, 程强 ,等. 基于信息超表面的无线通信(特邀)[J]. 红外与激光工程, 2022,51(1): 324-339. |
LIANG J C , CHEN W C , CHENG Q ,et al. Wireless communications based on information metasurfaces(invited)[J]. Infrared and Laser Engineering, 2022,51(1): 324-339. | |
[25] | WU Q Q , ZHANG R . Towards smart and reconfigurable environment:intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020,58(1): 106-112. |
[26] | WU Q Q , ZHANG R . Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019,18(11): 5394-5409. |
[27] | WANG P L , FANG J , YUAN X J ,et al. Intelligent reflecting surface-assisted millimeter wave communications:joint active and passive precoding design[J]. IEEE Transactions on Vehicular Technology, 2020,69(12): 14960-14973. |
[28] | HAN Y , TANG W K , JIN S ,et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019,68(8): 8238-8242. |
[29] | WU Q Q , ZHANG R . Weighted sum power maximization for intelligent reflecting surface aided SWIPT[J]. IEEE Wireless Communications Letters, 2020,9(5): 586-590. |
[30] | XU Y J , XIE H , WU Q Q ,et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022,70(2): 1457-1471. |
[31] | 徐勇军, 高正念, 王茜竹 ,等. 基于智能反射面辅助的无线供电通信网络鲁棒能效最大化算法[J]. 电子与信息学报, 2022,44(7): 2317-2324. |
XU Y J , GAO Z N , WANG Q Z ,et al. Robust energy efficiency maximization algorithm for intelligent reflecting surface-aided wireless powered-communication networks[J]. Journal of Electronics & Information Technology, 2022,44(7): 2317-2324. | |
[32] | 黎赛, 杨亮, 崔琪楣 ,等. RIS辅助的混合RF/THz系统性能分析[J]. 通信学报, 2022,43(1): 49-58. |
LI S , YANG L , CUI Q M ,et al. Performance analysis of RIS-assisted mixed RF/THz system[J]. Journal on Communications, 2022,43(1): 49-58. |
[1] | 王莉, 费爱国, 张平, 徐连明. 智能应急指挥通信网络新框架与关键技术研究[J]. 通信学报, 2023, 44(6): 1-11. |
[2] | 赵辉, 李进, 马薇雯, 邓文超, 张天骐, 刘媛妮. 大气联合效应下的光差分空间调制性能分析[J]. 通信学报, 2023, 44(6): 57-69. |
[3] | 李荣鹏, 汪丙炎, 张宏纲, 赵志峰. 知识增强的语义通信接收端设计[J]. 通信学报, 2023, 44(6): 70-76. |
[4] | 杨龙, 赵丽, 周雨晨, 贺冰涛, 陈健. 缓存辅助的协作NOMA携能传输[J]. 通信学报, 2023, 44(6): 77-89. |
[5] | 马鑫迪, 李清华, 姜奇, 马卓, 高胜, 田有亮, 马建峰. 面向Non-IID数据的拜占庭鲁棒联邦学习[J]. 通信学报, 2023, 44(6): 138-153. |
[6] | 金彪, 李逸康, 姚志强, 陈瑜霖, 熊金波. GenFedRL:面向深度强化学习智能体的通用联邦强化学习框架[J]. 通信学报, 2023, 44(6): 183-197. |
[7] | 马帅, 裴科, 祁华艳, 李航, 曹雯, 王洪梅, 熊海良, 李世银. 基于生成模型的地磁室内高精度定位算法研究[J]. 通信学报, 2023, 44(6): 211-222. |
[8] | 石光明, 杨旻曦, 高大化, 柴靖轩. 面向语义信息直传的通信架构[J]. 通信学报, 2023, 44(5): 15-27. |
[9] | 刘盈泽, 郭渊博, 方晨, 李勇飞, 陈庆礼. 基于有限理性的网络防御策略智能规划方法[J]. 通信学报, 2023, 44(5): 52-63. |
[10] | 尹沛捷, 李凤华, 牛犇, 罗海洋, 邝彬, 张玲翠. 面向版式文档的细粒度隐私操作控制方法[J]. 通信学报, 2023, 44(5): 94-109. |
[11] | 余晟兴, 陈泽凯, 陈钟, 刘西蒙. DAGUARD:联邦学习下的分布式后门攻击防御方案[J]. 通信学报, 2023, 44(5): 110-122. |
[12] | 张海波, 曹钰坤, 刘开健, 王汝言. 车联网中基于区块链的分布式信任管理方案[J]. 通信学报, 2023, 44(5): 148-157. |
[13] | 田有亮, 吴柿红, 李沓, 王林冬, 周骅. 基于激励机制的联邦学习优化算法[J]. 通信学报, 2023, 44(5): 169-180. |
[14] | 刘雪娇, 钟强, 夏莹杰. 基于双层分片区块链的车联网跨信任域高效认证方案[J]. 通信学报, 2023, 44(5): 213-223. |
[15] | 王再见, 谷慧敏. 基于联合优化的网络切片资源分配策略[J]. 通信学报, 2023, 44(5): 234-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|