通信学报 ›› 2022, Vol. 43 ›› Issue (12): 134-145.doi: 10.11959/j.issn.1000-436x.2022239
蒋占军, 刘欢, 张华卫, 李翠然
修回日期:
2022-11-19
出版日期:
2022-12-25
发布日期:
2022-12-01
作者简介:
蒋占军(1975- ),男,宁夏中卫人,博士,兰州交通大学教授、硕士生导师,主要研究方向为未来移动通信关键技术、分布式无线通信技术、无线网络规划与优化等基金资助:
Zhanjun JIANG, Huan LIU, Huawei ZHANG, Cuiran LI
Revised:
2022-11-19
Online:
2022-12-25
Published:
2022-12-01
Supported by:
摘要:
针对正交时频空(OTFS)系统中功率放大器(PA)非线性特性导致传输信号产生失真的问题,提出了一种接收端补偿算法。利用Bussgang定理,结合PA复系数多项式及失真项平均能量对信道状态信息进行估计,重构了包含失真项的发送信号,更新了多项式归一化系数估计值,并基于此,在接收端使用迭代迫零均衡算法对非线性失真项进行自适应补偿分析。结果表明,所提算法降低了Saleh和Rapp模型对传输信号的非线性影响并能够有效提升OTFS系统的误码率性能。
中图分类号:
蒋占军, 刘欢, 张华卫, 李翠然. OTFS接收端信道估计辅助的无记忆功放非线性失真补偿算法[J]. 通信学报, 2022, 43(12): 134-145.
Zhanjun JIANG, Huan LIU, Huawei ZHANG, Cuiran LI. Nonlinear distortion compensation algorithm aided by channel estimation of memoryless power amplifier for OTFS receiver[J]. Journal on Communications, 2022, 43(12): 134-145.
[1] | 王勇, 向新, 易克初 . 基于非迭代算法和非直接学习结构的查询表TWTA预失真器[J]. 通信学报, 2006,27(9): 106-109,117. |
WANG Y , XIANG X , YI K C . Look-up table predistorter based on non-iterative algorithm and indirect learning architecture for TWTA[J]. Journal on Communications, 2006,27(9): 106-109,117. | |
[2] | HOSSAIN M N , RYU H G . Advanced OTFS communication system with compact spectrum and power efficiency improvement[J]. International Journal of Communication Systems, 2021,34(16): e4959. |
[3] | 黄浩, 钱骅, 姚赛杰 ,等. 基于坐标变换的射频功放预失真参数估计方法[J]. 通信学报, 2015,36(1): 79-87. |
HUANG H , QIAN H , YAO S J ,et al. Coordinate transformation based coefficients estimation algorithm for digital predistortion of RF power amplifiers[J]. Journal on Communications, 2015,36(1): 79-87. | |
[4] | GAO S , ZHENG J P . Peak-to-average power ratio reduction in pilot-embedded OTFS modulation through iterative clipping and filtering[J]. IEEE Communications Letters, 2020,24(9): 2055-2059. |
[5] | HOSSAIN M N , SUGIURA Y , SHIMAMURA T ,et al. DFT-spread OTFS communication system with the reductions of PAPR and nonlinear degradation[J]. Wireless Personal Communications, 2020,115(3): 2211-2228. |
[6] | NAVEEN C , SUDHA V . Peak-to-average power ratio reduction in OTFS modulation using companding technique[C]// Proceedings of 2020 5th International Conference on Devices,Circuits and Systems (ICDCS). Piscataway:IEEE Press, 2020: 140-143. |
[7] | MARSALEK R , BLUMENSTEIN J , PROKES A ,et al. Orthogonal time frequency space modulation:pilot power allocation and nonlinear power amplifiers[C]// Proceedings of 2019 IEEE International Symposium on Signal Processing and Information Technology. Piscataway:IEEE Press, 2019: 1-4. |
[8] | MARSALEK R , BLUMENSTEIN J , SCHüTZENH?FER D ,et al. OTFS modulation and influence of wideband RF impairments measured on a 60 GHz testbed[C]// Proceedings of 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications. Piscataway:IEEE Press, 2020: 1-5. |
[9] | TELLADO J , HOO L M C , CIOFFI J M . Maximum-likelihood detection of nonlinearly distorted multicarrier symbols by iterative decoding[J]. IEEE Transactions on Communications, 2003,51(2): 218-228. |
[10] | BALTAR L G , DIERKS S , GREGORIO F H ,et al. OFDM receivers with iterative nonlinear distortion cancellation[C]// Proceedings of 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications. Piscataway:IEEE Press, 2010: 1-5. |
[11] | GREGORIO F H , WERNER S , COUSSEAU J ,et al. Receiver-side nonlinearities mitigation using an extended iterative decision-based technique[J]. Signal Processing, 2011,91(8): 2042-2056. |
[12] | KOLLENGODE RAMACHANDRAN M , CHOCKALINGAM A . MIMO-OTFS in high-Doppler fading channels:signal detection and channel estimation[C]// Proceedings of 2018 IEEE Global Communications Conference. Piscataway:IEEE Press, 2018: 206-212. |
[13] | SHEN W Q , DAI L L , AN J P ,et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019,67(16): 4204-4217. |
[14] | ZHANG M C , WANG F G , YUAN X J ,et al. 2D structured turbo compressed sensing for channel estimation in OTFS systems[C]// Proceedings of 2018 IEEE International Conference on Communication Systems. Piscataway:IEEE Press, 2018: 45-49. |
[15] | MISHRA H B , SINGH P , PRASAD A K ,et al. OTFS channel estimation and data detection designs with superimposed pilots[J]. IEEE Transactions on Wireless Communications, 2022,21(4): 2258-2274. |
[16] | RAVITEJA P , PHAN K T , HONG Y ,et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018,17(10): 6501-6515. |
[17] | RAVITEJA P , PHAN K T , HONG Y . Embedded pilot-aided channel estimation for OTFS in delay-Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019,68(5): 4906-4917. |
[18] | KUMAR S V , FLANAGAN M F , CARDIFF B . Maximum likelihood channel path detection and MMSE channel estimation in OTFS systems[C]// Proceedings of 2020 IEEE 92nd Vehicular Technology Conference. Piscataway:IEEE Press, 2010: 1-5. |
[19] | MURALI K R , CHOCKALINGAM A . On OTFS modulation for high-Doppler fading channels[C]// Proceedings of 2018 Information Theory and Applications Workshop (ITA). Piscataway:IEEE Press, 2018: 1-10. |
[20] | FISH A , GUREVICH S , HADANI R ,et al. Delay-Doppler channel estimation in almost linear complexity[J]. IEEE Transactions on Information Theory, 2013,59(11): 7632-7644. |
[21] | HASHIMOTO N , OSAWA N , YAMAZAKI K ,et al. Channel estimation and equalization for CP-OFDM-based OTFS in fractional Doppler channels[C]// Proceedings of 2021 IEEE International Conference on Communications Workshops. Piscataway:IEEE Press, 2021: 1-7. |
[22] | ZHAO L , GAO W J , GUO W B . Sparse Bayesian learning of delay-Doppler channel for OTFS system[J]. IEEE Communications Letters, 2020,24(12): 2766-2769. |
[23] | NAIKOTI A , CHOCKALINGAM A . Low-complexity delay-Doppler symbol DNN for OTFS signal detection[C]// Proceedings of 2021 IEEE 93rd Vehicular Technology Conference. Piscataway:IEEE Press, 2021: 1-6. |
[24] | SALEH A A M . Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers[J]. IEEE Transactions on Communications, 1981,29(11): 1715-1720. |
[25] | KURAHASHI M , KUBO H , HAMADA S . Ka-band 80-100 TWT for satellite transponder[C]// Proceedings of the 17th AIAA International Communications Satellite Systems Conference and Exhibit. Virginia:AIAA Press, 1998:1278. |
[26] | ZHOU G T , KENNEY J S . Predicting spectral regrowth of nonlinear power amplifiers[J]. IEEE Transactions on Communications, 2002,50(5): 718-722. |
[27] | MILLER I . Probability,random variables,and stochastic processes[J]. Technometrics, 1966,8(2): 378-380. |
[28] | RAVITEJA P , HONG Y , VITERBO E ,et al. Practical pulse-shaping waveforms for reduced-cyclic-prefix OTFS[J]. IEEE Transactions on Vehicular Technology, 2019,68(1): 957-961. |
[29] | ZHIDKOV S V , . Receiver synthesis for nonlinearly amplified OFDM signal[C]// Proceedings of 2003 IEEE Workshop on Signal Processing Systems. Piscataway:IEEE Press, 2003: 387-392. |
[30] | KAY S M . Fundamentals of statistical signal processing:estimation theory[M]. Englewood Cliffs: Prentice-Hall International Editions, 1993. |
[31] | RAPP C . Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal[J]. ESA Special Publication, 1991,332: 179-184. |
[1] | 崔伟, 于颖, 于海霞, 陈超, 李云鹏. 基于IOC-CSMP的OFDM系统稀疏信道快速重构算法[J]. 通信学报, 2023, 44(2): 52-58. |
[2] | 曾嵘, 杭潇. 车联网环境下可重构智能反射面辅助无线信道估计算法[J]. 通信学报, 2022, 43(8): 142-150. |
[3] | 邢旺, 唐晓刚, 周一青, 张冲, 潘振岗. 面向OTFS的时延-多普勒域信道估计方法综述[J]. 通信学报, 2022, 43(12): 188-201. |
[4] | 梅锴, 赵海涛, 刘潇然, 刘军, 熊俊, 任保全, 魏急波. 高效的基于数据与模型的信道估计算法[J]. 通信学报, 2022, 43(1): 59-70. |
[5] | 李赞, 胡俊凡, 李兵, 石嘉, 司江勃. 基于正交时频空技术的低轨卫星通信的安全分析[J]. 通信学报, 2021, 42(8): 25-32. |
[6] | 黄源, 何怡刚, 吴裕庭, 程彤彤, 隋永波, 宁暑光. 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法[J]. 通信学报, 2021, 42(8): 61-69. |
[7] | 廖勇, 蔡志镕. 基于基扩展模型的改进正则化正交匹配追踪V2X快时变SC-FDMA信道估计[J]. 通信学报, 2021, 42(4): 177-184. |
[8] | 吕新荣, 李有明, 国强. MIMO-OFDM系统的信道与脉冲噪声联合估计方法[J]. 通信学报, 2021, 42(12): 54-64. |
[9] | 傅友华, 陈栋. 混合智能反射表面结构辅助的毫米波通信信道估计[J]. 通信学报, 2021, 42(10): 189-196. |
[10] | 王莹, 任军, 史可, 林彬. 基于深度学习的广义频分复用系统时频双选择信道估计[J]. 通信学报, 2021, 42(10): 233-242. |
[11] | 黄杰,杨凡,高乙文,张博为. 超密集网络导频复用干扰避免策略[J]. 通信学报, 2020, 41(7): 165-171. |
[12] | 王海荣, 董健, 王玉辉. 大规模MIMO系统中基于谱分离的导频去污染[J]. 通信学报, 2020, 41(4): 197-205. |
[13] | 吕新荣,李有明,余明宸. OFDM系统的信道与脉冲噪声的联合估计方法[J]. 通信学报, 2018, 39(3): 191-198. |
[14] | 马新迎,陈智,马斯,方俊. 空间信息网络中毫米波MIMO通信系统关键技术[J]. 通信学报, 2017, 38(Z1): 179-185. |
[15] | 丁勇,欧阳缮,谢跃雷,蒋俊正,陈小毛. 基于多符号BEM的OFDM系统时变信道估计[J]. 通信学报, 2017, 38(3): 45-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|