Journal on Communications ›› 2016, Vol. 37 ›› Issue (12): 67-76.doi: 10.11959/j.issn.1000-436x.2016273

• Academic paper • Previous Articles     Next Articles

Load balancing geographic routing strategy for aeronautical ad hoc networks

Bo ZHENG,Heng-yang ZHANG,Bao-liang WANG,Wei ZHAO   

  1. Information and Navigation Institute, Air Force Engineering University, Xi'an 710077, China
  • Online:2016-12-25 Published:2017-05-15
  • Supported by:
    The National Natural Science Foundation of China;The Aeronautical Science Foundation of China

Abstract:

In aeronautical ad hoc networks, the traditional greedy perimeter stateless routing (GPSR) protocol poses sev-eral issues. For example, it is difficult to adapt to the highly-dynamic network environment, and it is prone to cause con-gestions. In order to address the problems, a TTE (time to enter the communication range of the destination)-based load balancing geographic routing (LBGR) protocol was presented. Taking TTE as the main routing decision metrics, this pro-tocol included the TTE-based packet forwarding scheme, multi-path traffic allocation scheme, and local optimum han-dling scheme. Furthermore, the multi-path traffic allocation scheme employing the queueing theory was modeled, and the mathematical expressions of some metrics were derived, such as the mean queue size, mean number of packets waiting in the queue, and mean waiting time. Finally, the analysis of the OMNeT++ simulations shows LBGR protocol has advan-tages over GPSR and some other protocols in terms of the packet delivery ratio and end-to-end delay, and is more suitable for the highly-dynamic aeronautical environment.

Key words: aeronautical ad hoc network, greedy geographical routing protocol, load balancing, multi-path, multi-queue, local optimum

No Suggested Reading articles found!