[33] |
KINGMA D P , BA J . Adam:a method for stochastic optimization[J]. arXiv Preprint,arXiv:1412.6980, 2014.
|
[34] |
WANG D K , ZHANG S L . Unsupervised person re-identification via multi-label classification[C]// Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2020: 10978-10987.
|
[35] |
ZHONG Z , ZHENG L , LUO Z M ,et al. Learning to adapt invariance in memory for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021,43(8): 2723-2738.
|
[36] |
SELVARAJU R R , COGSWELL M , DAS A ,et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020,128(2): 336-359.
|
[1] |
LI J H , CHENG D Q , LIU R H ,et al. Unsupervised person re-identification based on measurement axis[J]. IEEE Signal Processing Letters, 2021,28: 379-383.
|
[2] |
ZHAO K , CHENG D Q , KOU Q Q ,et al. Sequences consistency feature learning for video-based person re-identification[J]. Electronics Letters, 2022,58(4): 142-144.
|
[3] |
任雪娜, 张冬明, 包秀国 ,等. 语义引导的遮挡行人再识别注意力网络[J]. 通信学报, 2021,42(10): 106-116.
|
|
REN X N , ZHANG D M , BAO X G ,et al. Semantic guidance atten-tion network for occluded person re-identification[J]. Journal on Communications, 2021,42(10): 106-116.
|
[4] |
SONG L C , WANG C , ZHANG L F ,et al. Unsupervised domain adaptive re-identification:theory and practice[J]. Pattern Recognition, 2020,102:107173.
|
[5] |
QI L , WANG L , HUO J ,et al. A novel unsupervised camera-aware domain adaptation framework for person re-identification[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019: 8079-8088.
|
[6] |
CHEN Y B , ZHU X T , GONG S G . Instance-guided context rendering for cross-domain person re-identification[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019: 232-242.
|
[7] |
LI Y J , LIN C S , LIN Y B ,et al. Cross-dataset person re-identification via unsupervised pose disentanglement and adaptation[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE Press, 2019: 7918-7928.
|
[8] |
LIN X T , REN P Z , YEH C H ,et al. Unsupervised person re-identification:a systematic survey of challenges and solutions[J]. arXiv Preprint,arXiv:2109.06057, 2021.
|
[9] |
GOODFELLOW I , POUGET-ABADIE J , MIRZA M ,et al. Generative adversarial networks[J]. Communications of the ACM, 2020,63(11): 139-144.
|
[10] |
ZHONG Z , ZHENG L , LUO Z M ,et al. Invariance matters:exemplar memory for domain adaptive person re-identification[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 598-607.
|
[11] |
MEKHAZNI D , BHUIYAN A , EKLADIOUS G ,et al. Unsupervised domain adaptation in the dissimilarity space for person re-identifica tion[C]// Computer Vision - ECCV 2020. Cham:Springer International Publishing, 2020: 159-174.
|
[12] |
YANG Q Z , YU H X , WU A C ,et al. Patch-based discriminative feature learning for unsupervised person re-identification[C]// Pro ceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 3628-3637.
|
[13] |
YU H X , ZHENG W S , WU A C ,et al. Unsupervised person re-identification by soft multilabel learning[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2019: 2143-2152.
|
[14] |
JIANG K , ZHANG T , ZHANG Y ,et al. Self-supervised agent learning for unsupervised cross-domain person re-identification[J]. IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society, 2020,29: 8549-8560.
|
[15] |
ZHAO R , OUYANG W L , WANG X G . Unsupervised salience learning for person re-identification[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2013: 3586-3593.
|
[16] |
RUBLEE E , RABAUD V , KONOLIGE K ,et al. ORB:an efficient alternative to SIFT or SURF[C]// Proceedings of 2011 International Conference on Computer Vision. Piscataway:IEEE Press, 2011: 2564-2571.
|
[17] |
JADERBERG M , SIMONYAN K , ZISSERMAN A ,et al. Spatial transformer networks[C]// Proceedings of the 28th International Conference on Neural Information Processing. Cambridge:MIT Press, 2015: 2017-2025.
|
[18] |
DAI J F , QI H Z , XIONG Y W ,et al. Deformable convolutional networks[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 764-773.
|
[19] |
DENG J , DONG W , SOCHER R ,et al. ImageNet:a large-scale hierarchical image database[C]// Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2009: 248-255.
|
[20] |
HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 770-778.
|
[21] |
DU Y , YUAN C F , LI B ,et al. Interaction-aware spatio-temporal pyramid attention networks for action classification[C]// Computer Vision - ECCV 2018. Cham:Springer International Publishing, 2018: 388-404.
|
[22] |
ZHANG S S , YANG J , SCHIELE B . Occluded pedestrian detection through guided attention in CNNs[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 6995-7003.
|
[23] |
WANG G S , YUAN Y F , CHEN X ,et al. Learning discriminative features with multiple granularities for person re-identification[C]// Proceedings of the 26th ACM International Conference On Multimedia. New York:ACM Press, 2018: 274-282.
|
[24] |
ESTER M , KRIEGEL H P , SANDER J ,et al. A density-based algo rithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Palo Alto:AAAI Press, 1996: 226-231.
|
[25] |
ZHENG L , SHEN L Y , TIAN L ,et al. Scalable person re-identification:a benchmark[C]// Proceedings of 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015: 1116-1124.
|
[26] |
ZHENG Z D , ZHENG L , YANG Y . Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2017: 3774-3782.
|
[27] |
WEI L H , ZHANG S L , GAO W ,et al. Person transfer GAN to bridge domain GAP for person re-identification[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 79-88.
|
[28] |
LI Y J , YANG F E , LIU Y C ,et al. Adaptation and re-identification network:an unsupervised deep transfer learning approach to person re-identification[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway:IEEE Press, 2018: 285-2856.
|
[29] |
WU J L , LIAO S C , LEI Z ,et al. Clustering and dynamic sampling based unsupervised domain adaptation for person re-identification[C]// Proceedings of 2019 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE Press, 2019: 886-891.
|
[30] |
ZHAO Y R , LU H T . Neighbor similarity and soft-label adaptation for unsupervised cross-dataset person re-identification[J]. Neurocomputing, 2020,388: 246-254.
|
[31] |
GE Y , LIU L , ZHANG H X . A three-stage learning approach to cross-domain person re-identification[J]. Applied Soft Computing, 2021,112:107793.
|
[32] |
ZHONG Z , ZHENG L , ZHENG Z D ,et al. Camera style adaptation for person re-identification[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2018: 5157-5166.
|