[1] |
ATLANTA. American cancer society[N]. Cancer Facts & Figures, 2018.
|
[2] |
斯璐, 郭军 . 新版中国黑素瘤诊治指南解读[J]. 临床肿瘤学杂志, 2012,17(2): 172-173.
|
|
SI L , GUO J . Interpretation of clinical practice guidelines for management of melanoma in China (new version of 2011)[J]. Chinese Clinical Oncology, 2012,17(2): 172-173.
|
[3] |
KASMI R , MOKRANI K . Classification of malignant melanoma and benign skin lesions:implementation of automatic ABCD rule[J]. IET Image Processing, 2016,10(6): 448-455.
|
[4] |
SOYER H P , ARGENZIANO G , ZALAUDEK I ,et al. Three-point checklist of dermoscopy[J]. Dermatology, 2004,208(1): 27-31.
|
[5] |
ARGENZIANO G , CATRICALà C , ARDIGO M ,et al. Seven-point checklist of dermoscopy revisited[J]. British Journal of Dermatology, 2011,164(4): 785-790.
|
[6] |
MENZIES S W . A method for the diagnosis of primary cutaneous melanoma using surface microscopy[J]. Dermatologic Clinics, 2001,19(2): 299-305.
|
[7] |
HENNING J S , DUSZA S W , WANG S Q ,et al. The CASH (color,architecture,symmetry,and homogeneity) algorithm for dermoscopy[J]. Journal of the American Academy of Dermatology, 2007,56(1): 45-52.
|
[8] |
XIE F Y , FAN H D , LI Y ,et al. Melanoma classification on dermoscopy images using a neural network ensemble model[J]. IEEE Transactions on Medical Imaging, 2017,36(3): 849-858.
|
[9] |
ALI A R A , DESERNO T M . A systematic review of automated melanoma detection in dermatoscopic images and its ground truth data[C]// Proceedings of SPIE Medical Imaging:Image Perception,Observer Performance,and Technology Assessment. 2012.
|
[10] |
KOROTKOV K , GARCIA R . Computerized analysis of pigmented skin lesions:a review[J]. Artificial Intelligence in Medicine, 2012,56(2): 69-90.
|
[11] |
JAMIL U , KHALID S . Comparative study of classification techniques used in skin lesion detection systems[C]// Proceedings of 17th IEEE International Multi Topic Conference 2014. Piscataway:IEEE Press, 2014: 266-271.
|
[12] |
BI L , KIM J , AHN E ,et al. Automatic melanoma detection via multi-scale lesion-biased representation and joint reverse classification[C]// Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Piscataway:IEEE Press, 2016: 1055-1058.
|
[13] |
HUANG A , KWAN S Y , CHANG W Y ,et al. A robust hair segmentation and removal approach for clinical images of skin lesions[C]// Proceedings of 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway:IEEE Press, 2013: 3315-3318.
|
[14] |
SáEZ A , SERRANO C , ACHA B . Model-based classification methods of global patterns in dermoscopic images[J]. IEEE Transactions on Medical Imaging, 2014,33(5): 1137-1147.
|
[15] |
IYATOMI H , CELEBI M E , SCHAEFER G ,et al. Automated color calibration method for dermoscopy images[J]. Computerized Medical Imaging and Graphics, 2011,35(2): 89-98.
|
[16] |
SCHAEFER G , RAJAB M I , CELEBI M E ,et al. Colour and contrast enhancement for improved skin lesion segmentation[J]. Computerized Medical Imaging and Graphics, 2011,35(2): 99-104.
|
[17] |
CELEBI M E , KINGRAVI H A , UDDIN B ,et al. A methodological approach to the classification of dermoscopy images[J]. Computerized Medical Imaging and Graphics, 2007,31(6): 362-373.
|
[18] |
GANSTER H , PINZ P , ROHRER R ,et al. Automated melanoma recognition[J]. IEEE Transactions on Medical Imaging, 2001,20(3): 233-239.
|
[19] |
XIE F Y , FAN H D , LI Y ,et al. Melanoma classification on dermoscopy images using a neural network ensemble model[J]. IEEE Transactions on Medical Imaging, 2017,36(3): 849-858.
|
[20] |
CAPDEHOURAT G , COREZ A , BAZZANO A ,et al. Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions[J]. Pattern Recognition Letters, 2011,32(16): 2187-2196.
|
[21] |
LAZEBNIK S , SCHMID C , PONCE J . Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[C]// Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06). Piscataway:IEEE Press, 2006: 2169-2178.
|
[22] |
CHEN S J , DING G G , LI C X ,et al. Image representation optimization based on locally aggregated descriptors[C]// Proceedings of Advances in Knowledge Discovery and Data Mining. 2016.
|
[23] |
SáNCHEZ J , PERRONNIN F , MENSINK T ,et al. Image classification with the fisher vector:theory and practice[J]. International Journal of Computer Vision, 2013,105(3): 222-245.
|
[24] |
CHATFIELD K , LEMPITSKY V , VEDALDI A ,et al. The devil is in the details:an evaluation of recent feature encoding methods[C]// Proceedings of the British Machine Vision Conference(2011). 2011.
|
[25] |
SONG Y Y , ZHANG L , CHEN S P ,et al. Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning[J]. IEEE Transactions on Biomedical Engineering, 2015,62(10): 2421-2433.
|
[26] |
HE K M , ZHANG X Y , REN S Q ,et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE Press, 2016: 770-778.
|
[27] |
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6): 84-90.
|
[28] |
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
|
[29] |
LECUN Y , BENGIO Y , HINTON G . Deep learning[J]. Nature, 2015,521(7553): 436-444.
|
[30] |
JAYALAKSHMI G S , KUMAR V S . Performance analysis of convolutional neural network (CNN) based cancerous skin lesion detection system[C]// Proceedings of 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). Piscataway:IEEE Press, 2019: 1-6.
|
[31] |
胡海根, 孔祥勇, 周乾伟 ,等. 基于深层卷积残差网络集成的黑色素瘤分类方法[J]. 计算机科学, 2019,46(5): 247-253.
|
|
HU H G , KONG X Y , ZHOU Q W ,et al. Melanoma classification method by integrating deep convolutional residual network[J]. Computer Science, 2019,46(5): 247-253.
|
[32] |
YU L Q , CHEN H , DOU Q ,et al. Automated melanoma recognition in dermoscopy images via very deep residual networks[C]// Proceedings of IEEE Transactions on Medical Imaging. Piscataway:IEEE Press, 2019: 994-1004.
|
[33] |
MAHBOD A , SCHAEFER G , WANG C L ,et al. Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification[J]. Computer Methods and Programs in Biomedicine, 2020,193: 105475.
|
[34] |
李航, 余镇, 倪东 ,等. 基于深度残差网络的皮肤镜图像黑色素瘤的识别[J]. 中国生物医学工程学报, 2018,37(3): 274-282.
|
|
LI H , YU Z , NI D ,et al. Melanoma recognition in dermoscopy images via deep residual network[J]. Chinese Journal of Biomedical Engineering, 2018,37(3): 274-282.
|
[35] |
GUHA S R , M RAFIZUL HAQUE S . Convolutional neural network based skin lesion analysis for classifying melanoma[C]// Proceedings of 2019 International Conference on Sustainable Technologies for Industry4.0 (STI). Piscataway:IEEE Press, 2019: 1-5.
|
[36] |
CHEN M , ZHOU P , WU D ,et al. AI-Skin:skin disease recognition based on self-learning and wide data collection through a closed-loop framework[J]. Information Fusion, 2020,54: 1-9.
|
[37] |
ZAFAR K , GILANI S O , WARIS A ,et al. Skin lesion segmentation from dermoscopic images using convolutional neural network[J]. Sensors, 2020,20(6): 1601.
|
[38] |
MARQUES O . Gray-level transformations[M]. New Jersey: John Wiley & Sons, 2011.
|
[39] |
CHENG S H , SHANG G C , ZHANG L . Handwritten digit recognition based on improved VGG16 network[C]// Proceedings of SPIE 11069,Tenth International Conference on Graphics and Image Processing (ICGIP 2018). 2019.
|
[40] |
CODELLA N , ROTEMBERG V , TSCHANDL P ,et al. Skin lesion analysis toward melanoma detection 2018:A challenge hosted by the international skin imaging collaboration (ISIC)[J]. arXiv preprint arXiv:1902.03368, 2019.
|