物联网学报 ›› 2021, Vol. 5 ›› Issue (2): 87-96.doi: 10.11959/j.issn.2096-3750.2021.00229

• 专题:物联网边缘智能与雾计算技术 • 上一篇    下一篇

边缘智能驱动的高能效无人机自主导航算法研究

林椿珉, 曾烈康, 陈旭   

  1. 中山大学计算机学院,广东 广州 510006
  • 修回日期:2021-03-20 出版日期:2021-06-30 发布日期:2021-06-01
  • 作者简介:林椿珉(1997- ),男,中山大学计算机学院硕士生,主要研究方向为无人机自动驾驶、边缘计算、边缘智能等
    曾烈康(1996- ),男,中山大学计算机学院博士生,主要研究方向为移动边缘计算、协同智能计算、边缘智能等
    陈旭(1986- ),男,博士,中山大学计算机学院教授、先进网络与计算系统研究所所长、数字家庭互动应用国家地方联合工程实验室副主任,主要研究方向为边缘计算、边缘智能、智能物联网
  • 基金资助:
    国家自然科学基金资助项目(U20A20159);国家自然科学基金资助项目(61972432)

Research on power efficient autonomous UAV navigation algorithm: an edge intelligence driven approach

Chunmin LIN, Liekang ZENG, Xu CHEN   

  1. School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
  • Revised:2021-03-20 Online:2021-06-30 Published:2021-06-01
  • Supported by:
    The National Natural Science Foundation of China(U20A20159);The National Natural Science Foundation of China(61972432)

摘要:

近年来,无人机的自主导航技术在多个行业中受到了广泛的关注,相比于传统的导航技术,采用图像感知的深度学习方法具有很好的泛化能力并且不受全球定位系统(GPS, global positioning system)信号的影响,被证明是一种具有前景的自主导航方法。然而,深度学习的推断需要较大功耗,这对于能耗资源十分有限的无人机来说是一项挑战。针对该问题,基于边缘智能理论,将强化学习技术引入无人机端侧的推断过程中,根据无人机所处的环境复杂度实时感知信息,动态配置卷积神经网络的结构参数,使得无人机在保持稳定导航的同时,尽可能地减少计算功耗开销,实现无人机高可靠、低时延与高能效的自主导航飞行能力。该算法在仿真环境和现实环境中分别进行了验证,实验结果表明,相比于对比算法,所提的基于强化学习动态配置算法能够让无人机花费更少的计算能耗开销具有更长的飞行距离与更高的成功率。

关键词: 无人机, 边缘智能, 深度学习, 强化学习, 自主导航

Abstract:

Autonomous drone navigation has received growing attention in the recent community.Compared with traditional navigation approaches which rely on location-based services highly, deep learning based visual methods have showed superior performance in self-adaption and generalization, which are a promising solution for autonomous navigation.Running the resource-hungry deep learning execution in the resource-constrained unmanned aerial vehicle (UAV), however, significant challenges were presented in power efficiency.To tackle this challenge, following the idea of edge intelligence, a deep reinforcement learning approach was introduced to dynamically configure the computational scale of the deep learning model on UAV and hence realize the autonomous navigation with low latency and high energy efficiency.Evaluations based on both simulation and real prototype experiments show that the proposed approach has the less energy consumption, longer navigation trail and higher obstacle avoidance rate.

Key words: UAV, edge intelligence, deep learning, reinforcement learning, autonomous navigation

中图分类号: 

No Suggested Reading articles found!