[1] |
杨毅宇, 周威, 赵尚儒 ,等. 物联网安全研究综述:威胁、检测与防御[J]. 通信学报, 2021,42(8): 188-205.
|
|
YANG Y Y , ZHOU W , ZHAO S R ,et al. Survey of IoT security research:threats,detection and defense[J]. Journal on Communications, 2021,42(8): 188-205.
|
[2] |
吕建新, 郑伟, 马林 ,等. 基于词向量语义扩展的网络文本特征选择方法研究[J]. 情报科学, 2019,37(12): 47-51.
|
|
LV J X , ZHENG W , MA L ,et al. Feature selection method of the network text based on semantic extension with word vector[J]. Information Science, 2019,37(12): 47-51.
|
[3] |
孟仕林, 赵蕴龙, 关东海 ,等. 融合情感与语义信息的情感分析方法[J]. 计算机应用, 2019,39(7): 1931-1935.
|
|
MENG S L , ZHAO Y L , GUAN D H ,et al. Sentiment analysis method combining sentiment and semantic information[J]. Journal of Computer Applications, 2019,39(7): 1931-1935.
|
[4] |
LI T , LI J , CHEN X F ,et al. NPMML:a framework for non-interactive privacy-preserving multi-party machine learning[J]. IEEE Transactions on Dependable and Secure Computing, 2021,18(6): 2969-2982.
|
[5] |
ZHANG X L , FU A M , WANG H Q ,et al. A privacy-preserving and verifiable federated learning scheme[C]// Proceedings of ICC 2020 2020 IEEE International Conference on Communications. Piscataway:IEEE Press, 2020: 1-6.
|
[6] |
SUH J , TANAKA T . Encrypted value iteration and temporal difference learning over leveled homomorphic encryption[C]// Proceedings of 2021 American Control Conference (ACC). Piscataway:IEEE Press, 2021.
|
[7] |
WANG Y C , LIANG X L , HEI X H ,et al. Deep learning data privacy protection based on homomorphic encryption in AIoT[J]. Mobile Information Systems,2021, 2021:5510857.
|
[8] |
YE H , LIU J Q , WANG W ,et al. Secure and efficient outsourcing differential privacy data release scheme in Cyber-physical system[J]. Future Generation Computer Systems, 2020,108: 1314-1323.
|
[9] |
BU Z Q , WANG H , LONG Q ,et al. On the convergence of deep learning with differential privacy[EB]. 2021.
|
[10] |
BU Z Q , GOPI S , KULKARNI J ,et al. Fast and memory efficient differentially private-SGD via JL projections[EB]. 2021.
|
[11] |
CHEN X , WU S Z , HONG M . Understanding gradient clipping in private SGD:A geometric perspective[J]. Advances in Neural Information Processing Systems, 2020,33: 13773-13782.
|
[12] |
KOSKELA A , JALKO J , HONKELA A . Computing tight differential privacy guarantees using fft[C]// International Conference on Artificial Intelligence and Statistics. Online:PMLR, 2020: 2560-2569.
|
[13] |
GHAZI B , GOLOWICH N , KUMAR R ,et al. On deep learning with label differential privacy[EB]. 2021.
|
[14] |
YUAN S , SHEN M , MIRONOV I ,et al. Practical,label private deep learning training based on secure multiparty computation and differential privacy[EB]. 2021.
|
[15] |
ABADI M , CHU A , GOODFELLOW I ,et al. Deep learning with differential privacy[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York:ACM Press, 2016: 308-318.
|
[16] |
DWORK C , . Differential privacy[C]// Proceedings of 33th International Colloquium on Automata,Languages and Programming. Berlin:Springer, 2006: 1-12.
|
[17] |
DWORK C , . Differential privacy:a survey of results[C]// Proceedings of the 5th International Conference on Theory and Applications of Models of Computation. Berlin:Springer-Verlag, 2008: 1-19.
|
[18] |
DWORK C , MCSHERRY F , NISSIM K ,et al. Calibrating noise to sensitivity in private data analysis[C]// Theory of Cryptography. Berlin,Heidelberg:Springer, 2006: 265-284.
|
[19] |
ZINKEVICH M , WEIMER M , LI L ,et al. Parallelized stochastic gradient descent[C]// Proceedings of Advances in neural information processing systems. Vancouver,Canada:NIPS, 2010: 2595-2603.
|
[20] |
CHANG D Q , LIN M , ZHANG C S . On the generalization ability of online gradient descent algorithm under the quadratic growth condition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018,29(10): 5008-5019.
|
[21] |
BUKOVSKY I , HOMMA N . An approach to stable gradient-descent adaptation of higher order neural units[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,28(9): 2022-2034.
|
[22] |
LECUN Y , BOTTOU L , BENGIO Y ,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11): 2278-2324.
|
[23] |
汪小寒, 韩慧慧, 张泽培 ,等. 树索引数据差分隐私预算分配方法[J]. 计算机应用, 2018,38(7): 1960-1966.
|
|
WANG X H , HAN H H , ZHANG Z P ,et al. Differential privacy budget allocation method for data of tree index[J]. Journal of Computer Applications, 2018,38(7): 1960-1966.
|
[24] |
GONG M G , FENG J L , XIE Y . Privacy-enhanced multi-party deep learning[J]. Neural Networks, 2020,121: 484-496.
|
[25] |
王璇 . 差分隐私保护中隐私预算的优化与应用[D]. 南京:南京邮电大学, 2019.
|
|
WANG X . Optimization and application of privacy budget in differential privacy protection[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2019.
|