[1] |
李陈生 . 基于城市交通的车载移动群体感知网络技术研究[D]. 北京:北京邮电大学, 2019.
|
|
LI C S . Research on vehicle mobile crowdsensign network technology based on urban public transportation[D]. Beijing:Beijing University of Posts and Telecommunications, 2019.
|
[2] |
刘媛妮, 李慧聪, 关鑫 ,等. 移动群智感知激励机制研究综述[J]. 重庆邮电大学学报(自然科学版), 2018,30(2): 147-158.
|
|
LIU Y N , LI H C , GUAN X ,et al. Review of incentive mechanism for mobile crowd sensing[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2018,30(2): 147-158.
|
[3] |
DASARI V S , KANTARCI B , POURYAZDANPANAH M ,et al. Game theory in mobile crowdsensing:a comprehensive survey[J]. Sensors, 2020,20(7): 1-23.
|
[4] |
方文凤, 周朝荣, 孙三山 . 移动群智感知中任务分配的研究[J]. 计算机应用研究, 2018,35(11): 3206-3212.
|
|
FANG W F , ZHOU C R , SUN S S . Research on task assignment for mobile crowdsensing[J]. Application Research of Computers, 2018,35(11): 3206-3212.
|
[5] |
黄涛 . 移动群智感知网络中任务分配机制研究[D]. 重庆:重庆大学, 2019.
|
|
HUANG T . Research on task assignment mechanism in mobile crowdsensing network[D]. Chongqing:Chongqing University, 2019.
|
[6] |
ROBBINS H . Some aspects of the sequential design of experiments[J]. Bulletin of the American Mathematical Society, 1952,58(5): 527-536.
|
[7] |
CHEN W , WANG Y J , YUAN Y ,et al. Combinatorial multi-armed bandit and its extension to probabilistically triggered arms[J]. Journal of Machine Learning Research, 2016,17(50): 1-33.
|
[8] |
徐晓雨 . 车联网群智感知任务分发研究与实现[D]. 北京:北京工业大学, 2018.
|
|
XU X Y . Research and implementation of task allocation for crowd sensing in Internet of vehicles[D]. Beijing:Beijing Uiversity of Technology, 2018.
|
[9] |
WAN J F , LIU J N , SHAO Z H ,et al. Mobile crowdsensing for traffic prediction in internet of vehicles[J]. Sensors, 2016,16(1): 88.
|
[10] |
严嘉赟 . 基于群智感知的车联网节点优化方法与应用[D]. 南京:南京邮电大学, 2019.
|
|
YAN J Y . Optimization method and application of vehicle network node based on crowdsensing[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2019.
|
[11] |
ZHOU Z , LIU P , FENG J ,et al. Computation resource allocation and task assignment optimization in vehicular fog computing:a contract-Matching approach[J]. IEEE Transactions on Vehicular Technology, 2019,68(4): 3113-3125.
|
[12] |
XIANG C C , HE S N , SHIN K G ,et al. Incentivizing platform–user interactions for crowdsensing[J]. IEEE Internet of Things Journal, 2020: 1-14.
|
[13] |
XING Y P , WANG L M , LI Z Y ,et al. Multi-attribute crowdsourcing task assignment with stability and satisfactory[J]. IEEE Access, 2019,7: 133351-133361.
|
[14] |
YANG S , WU F , TANG S J ,et al. Selecting most informative contributors with unknown costs for budgeted crowdsensing[C]// 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS). Beijing:IEEE Press, 2016: 1-6.
|
[15] |
YANG S , QI X T , WU F ,et al. Bandit user selection algorithm for budgeted and time-limited mobile crowdsensing[C]// GLOBECOM 2017-2017 IEEE Global Communications Conference. Singapore:IEEE Press, 2017: 1-6.
|
[16] |
GAO G J , WU J , XIAO M J ,et al. Combinatorial multi-armed bandit based unknown worker recruitment in heterogeneous crowdsensing[C]// Proceedings of the 39th IEEE International Conference on Computer Communications (INFOCOM 2020). Toronto:IEEE Press, 2020: 179-188.
|
[17] |
王涛春, 刘婷婷, 刘申 ,等. 群智感知中的参与者信誉评估方案[J]. 计算机应用, 2018,38(3): 753.
|
|
WANG T C , LIU T T , LIU S ,et al. Participant reputation evaluation scheme in crowd sensing[J]. Journal of Computer Applications, 2018,38(3): 753.
|
[18] |
孙鸿滨 . 移动群智感知中基于数据质量的参与者优选方法[D]. 北京:北京交通大学, 2019.
|
|
SUN H B . Quality-aware based participant selection for mobile crowd sensing[D]. Beijing:Beijing Jiaotong University, 2019.
|
[19] |
YANG C Y , YU Z W , LIU Y M ,et al. Dynamic allocation for complex mobile crowdsourcing task with internal dependencies[C]// 2019 IEEE SmartWorld,Ubiquitous Intelligence & Computing,Advanced &Trusted Computing,Scalable Computing & Communications,Cloud& Big Data Computing,Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Leicester:IEEE Press, 2019: 818-825.
|
[20] |
YUAN G , SUN P H , ZHAO J ,et al. A review of moving object trajectory clustering algorithms[J]. Artificial Intelligence Review, 2017,47(1): 123-144.
|
[21] |
GAWDE G , PAWAR J . Similarity search of time series trajectories based on shape[C]// The ACM India Joint International Conference. New York:ACM Press, 2018: 340-343.
|
[22] |
LEE J , HAN J , WHANG K . Trajectory clustering:a partition-and-group framework[C]// Proceedings of the ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2007: 593-604.
|
[23] |
TANG W , PI D C , HE Y . A density-based clustering algorithm with sampling for travel behavior analysis[C]// Intelligent Data Engineering and Automated Learning– IDEAL 2016. Yangzhou:Springer Press, 2016: 231-239.
|
[24] |
CHENG Z Y , JIANG L , LIU D S ,et al. Density based spatio-temporal trajectory clustering algorithm[C]// IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia:IEEE Press, 2018: 3358-3361.
|
[25] |
HAN B , LIU L , OMIECINSKI E . A systematic approach to clustering whole trajectories of mobile objects in road networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2017,29(5): 936-949.
|
[26] |
PELEKIS N , KOPANAKIS I , KOSTIFAKOS E ,et al. Clustering trajectories of moving objects in an uncertain world[C]// 2009 9th IEEE International Conference on Data Mining. Miami:IEEE Press, 2009: 417-427.
|
[27] |
KROSE B . Learning from delayed reward[J]. Robotics and Autonomous Systems, 1995,15(4): 233-235.
|
[28] |
AUER P , CESA-BIANCHI N ,, FISCHER P . Finite-time analysis of the multiarmed bandit problem[J]. Machine Learning, 2002,47(2): 235-256.
|