物联网学报 ›› 2023, Vol. 7 ›› Issue (1): 37-48.doi: 10.11959/j.issn.2096-3750.2023.00320
江恺1, 曹越1,2, 周欢3, 任学锋2, 朱永东4, 林海1
修回日期:
2022-12-30
出版日期:
2023-03-30
发布日期:
2023-03-01
作者简介:
江恺(1995- ),男,武汉大学博士生,主要研究方向为边缘智能、多智能体/深度强化学习、智能交通系统等基金资助:
Kai JIANG1, Yue CAO1,2, Huan ZHOU3, Xuefeng REN2, Yongdong ZHU4, Hai LIN1
Revised:
2022-12-30
Online:
2023-03-30
Published:
2023-03-01
Supported by:
摘要:
作为一项新兴交叉学科领域,边缘智能通过将人工智能推送至靠近交通数据源侧,并利用边缘算力、存储资源及感知能力,在提供实时响应、智能化决策、网络自治的同时,赋能更加智能、高效的资源调配与处理机制,从而实现车联网从接入“管道化”向信息“智能化”使能平台的跨越。然而,当前边缘智能于车联网领域的成功实施仍处于起步阶段,迫切需要以更为广阔的视角对这一新兴领域进行全面综述。为此,面向车联网应用场景,首先介绍边缘智能的背景、概念及关键技术;然后,对车联网应用场景中基于边缘智能的服务类型进行整体概述,同时详细阐述边缘智能模型的部署和实施过程;最后,分析边缘智能于车联网中的关键开放性挑战,并探讨应对策略,以推动其潜在研究方向。
中图分类号:
江恺, 曹越, 周欢, 任学锋, 朱永东, 林海. 车联网边缘智能:概念、架构、问题、实施和展望[J]. 物联网学报, 2023, 7(1): 37-48.
Kai JIANG, Yue CAO, Huan ZHOU, Xuefeng REN, Yongdong ZHU, Hai LIN. Edge intelligence empowered internet of vehicles: concept, framework, issues, implementation, and prospect[J]. Chinese Journal on Internet of Things, 2023, 7(1): 37-48.
[1] | JIAU M K , HUANG S C , HWANG J N ,et al. Multimedia services in cloud-based vehicular networks[J]. IEEE Intelligent Transportation Systems Magazine, 2015,7(3): 62-79. |
[2] | PENG J K , FAN Y , YIN G D ,et al. Collaborative optimization of energy management strategy and adaptive cruise control based on deep reinforcement learning[J]. IEEE Transactions on Transportation Electrification, 2022. |
[3] | HUANG J H , CUI H X , CHEN C . Cluster-based radio resource management in dynamic vehicular networks[J]. IEEE Access, 2022(10): 43562-43570. |
[4] | KAIWARTYA O , ABDULLAH A H , CAO Y ,et al. Internet of vehicles:motivation,layered architecture,network model,challenges,and future aspects[J]. IEEE Access, 2016,4(2): 5356-5373. |
[5] | ZHOU H , JIANG K , LIU X X ,et al. Deep reinforcement learning for energy-efficient computation offloading in mobile-edge computing[J]. IEEE Internet of Things Journal, 2022,9(2): 1517-1530. |
[6] | 刘婷婷, 杨晨阳, 索士强 ,等. 无线通信中的边缘智能[J]. 信号处理, 2020,36(11): 1789-1803. |
LIU T T , YANG C Y , SUO S Q ,et al. Edge intelligence for wireless communication[J]. Journal of Signal Processing, 2020,36(11): 1789-1803. | |
[7] | ABBAS N , ZHANG Y , TAHERKORDI A ,et al. Mobile edge computing:a survey[J]. IEEE Internet of Things Journal, 2018,5(1): 450-465. |
[8] | TALEB T , SAMDANIS K , MADA B ,et al. On multi-access edge computing:a survey of the emerging 5G network edge cloud architecture and orchestration[J]. IEEE Communications Surveys & Tutorials, 2017,19(3): 1657-1681. |
[9] | TANG M , WONG V W S . Deep reinforcement learning for task offloading in mobile edge computing systems[J]. IEEE Transactions on Mobile Computing, 2022,21(6): 1985-1997. |
[10] | JIANG W , FENG G , QIN S ,et al. Multi-agent reinforcement learning for efficient content caching in mobile D2D networks[J]. IEEE Transactions on Wireless Communications, 2019,18(3): 1610-1622. |
[11] | LI X H , WANG X F , WAN P J ,et al. Hierarchical edge caching in device-to-device aided mobile networks:modeling,optimization,and design[J]. IEEE Journal on Selected Areas in Communications, 2018,36(8): 1768-1785. |
[12] | JIANG K , ZHOU H , ZENG D Z ,et al. Multi-agent reinforcement learning for cooperative edge caching in Internet of vehicles[C]// Proceedings of 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems. Piscataway:IEEE Press, 2020: 455-463. |
[13] | GU B , GAO L X , WANG X D ,et al. Privacy on the edge:customizable privacy-preserving context sharing in hierarchical edge computing[J]. IEEE Transactions on Network Science and Engineering, 2020,7(4): 2298-2309. |
[14] | 张彦, 张科, 曹佳钰 . 边缘智能驱动的车联网[J]. 物联网学报, 2018,2(4): 40-48. |
ZHANG Y , ZHANG K , CAO J Y . Internet of vehicles empowered by edge intelligence[J]. Chinese Journal on Internet of Things, 2018,2(4): 40-48. | |
[15] | XU X L , LI H Y , XU W J ,et al. Artificial intelligence for edge service optimization in internet of vehicles:a survey[J]. Tsinghua Science and Technology, 2022,27(2): 270-287. |
[16] | ZHOU Z , CHEN X , LI E ,et al. Edge intelligence:paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019,107(8): 1738-1762. |
[17] | JIANG K , SUN C , ZHOU H ,et al. Intelligence-empowered mobile edge computing:framework,issues,implementation,and outlook[J]. IEEE Network, 2021,35(5): 74-82. |
[18] | XU D L , LI T , LI Y ,et al. Edge intelligence:empowering intelligence to the edge of network[J]. Proceedings of the IEEE, 2021,109(11): 1778-1837. |
[19] | WANG F X , ZHANG M , WANG X X ,et al. Deep learning for edge computing applications:a state-of-the-art survey[J]. IEEE Access, 2020,8(1): 58322-58336. |
[20] | LUONG N C , HOANG D T , GONG S M ,et al. Applications of deep reinforcement learning in communications and networking:a survey[J]. IEEE Communications Surveys & Tutorials, 2019,21(4): 3133-3174. |
[21] | WANG F X , WANG F , LIU J C ,et al. Intelligent video caching at network edge:a multi-agent deep reinforcement learning approach[C]// Proceedings of IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. Piscataway:IEEE Press, 2020: 2499-2508. |
[22] | CHAHBAR M , DIAZ G , DANDOUSH A ,et al. A comprehensive survey on the E2E 5G network slicing model[J]. IEEE Transactions on Network and Service Management, 2021,18(1): 49-62. |
[23] | SONG C , ZHANG M , ZHAN Y Y ,et al. Hierarchical edge cloud enabling network slicing for 5G optical fronthaul[J]. Journal of Optical Communications and Networking, 2019,11(4): B60-B70. |
[24] | 张朝昆, 崔勇, 唐翯翯 ,等. 软件定义网络(SDN)研究进展[J]. 软件学报, 2015,26(1): 62-81. |
ZHANG C K , CUI Y , TANG H H ,et al. State-of-the-art survey on software-defined networking(SDN)[J]. Journal of Software, 2015,26(1): 62-81. | |
[25] | HAN K , LI S R , TANG S F ,et al. Application-driven end-to-end slicing:when wireless network virtualization orchestrates with NFV-based mobile edge computing[J]. IEEE Access, 2018,6(1): 26567-26577. |
[26] | ZHANG J , LETAIEF K B . Mobile edge intelligence and computing for the internet of vehicles[J]. Proceedings of the IEEE, 2020,108(2): 246-261. |
[27] | MAO S , LENG S P , ZHANG Y . Joint communication and computation resource optimization for NOMA-assisted mobile edge computing[C]// Proceedings of ICC 2019 - 2019 IEEE International Conference on Communications. Piscataway:IEEE Press, 2019: 1-6. |
[28] | ZHANG K , MAO Y M , LENG S P ,et al. Optimal delay constrained offloading for vehicular edge computing networks[C]// Proceedings of 2017 IEEE International Conference on Communications. Piscataway:IEEE Press, 2018: 1-6. |
[29] | CHANG Z , LIU L Q , GUO X J ,et al. Dynamic resource allocation and computation offloading for IoT fog computing system[J]. IEEE Transactions on Industrial Informatics, 2021,17(5): 3348-3357. |
[30] | NING Z L , DONG P R , KONG X J ,et al. A cooperative partial computation offloading scheme for mobile edge computing enabled Internet of Things[J]. IEEE Internet of Things Journal, 2019,6(3): 4804-4814. |
[31] | WANG J F , LV T J , HUANG P M ,et al. Mobility-aware partial computation offloading in vehicular networks:a deep reinforcement learning based scheme[J]. China Communications, 2020,17(10): 31-49. |
[32] | ZHOU H , WU T , ZHANG H J ,et al. Incentive-driven deep reinforcement learning for content caching and D2D offloading[J]. IEEE Journal on Selected Areas in Communications, 2021,39(8): 2445-2460. |
[33] | QIAN L P , WU Y , JIANG F L ,et al. NOMA assisted multi-task multi-access mobile edge computing via deep reinforcement learning for industrial Internet of Things[J]. IEEE Transactions on Industrial Informatics, 2021,17(8): 5688-5698. |
[34] | YAN J , BI S Z , ZHANG Y J A . Offloading and resource allocation with general task graph in mobile edge computing:a deep reinforcement learning approach[J]. IEEE Transactions on Wireless Communications, 2020,19(8): 5404-5419. |
[35] | TAN L T , HU R Q . Mobility-aware edge caching and computing in vehicle networks:a deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2018,67(11): 10190-10203. |
[36] | ALNAGAR Y , GOHARY R H , HOSNY S ,et al. Mobility-aware edge caching for minimizing latency in vehicular networks[J]. IEEE Open Journal of Vehicular Technology, 2022(3): 68-84. |
[37] | AO W C , PSOUNIS K . Fast content delivery via distributed caching and small cell cooperation[J]. IEEE Transactions on Mobile Computing, 2018,17(5): 1048-1061. |
[38] | WU H J , ZHANG J , CAI Z P ,et al. Toward energy-aware caching for intelligent connected vehicles[J]. IEEE Internet of Things Journal, 2020,7(9): 8157-8166. |
[39] | WANG X F , CHEN M , TALEB T ,et al. Cache in the air:exploiting content caching and delivery techniques for 5G systems[J]. IEEE Communications Magazine, 2014,52(2): 131-139. |
[40] | QIAO G H , LENG S P , MAHARJAN S ,et al. Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2020,7(1): 247-257. |
[41] | WANG X F , WANG C Y , LI X H ,et al. Federated deep reinforcement learning for internet of things with decentralized cooperative edge caching[J]. IEEE Internet of Things Journal, 2020,7(10): 9441-9455. |
[42] | 张星洲, 鲁思迪, 施巍松 . 边缘智能中的协同计算技术研究[J]. 人工智能, 2019,6(5): 55-67. |
ZHANG X Z , LU S D , SHI W S . Research on cooperative computing technologies in edge intelligence[J]. AI-View, 2019,6(5): 55-67. | |
[43] | KHAN R , KUMAR P , JAYAKODY D N K ,et al. A survey on security and privacy of 5G technologies:potential solutions,recent advancements,and future directions[J]. IEEE Communications Surveys & Tutorials, 2020,22(1): 196-248. |
[44] | 李克强, 常雪阳, 李家文 ,等. 智能网联汽车云控系统及其实现[J]. 汽车工程, 2020,42(12): 1595-1605. |
LI K Q , CHANG X Y , LI J W ,et al. Cloud control system for intelligent and connected vehicles and its application[J]. Automotive Engineering, 2020,42(12): 1595-1605. | |
[45] | NAN K M , LIU S C , DU J Z ,et al. Deep model compression for mobile platforms:a survey[J]. Tsinghua Science and Technology, 2019,24(6): 677-693. |
[46] | XU M T , ALAMRO S , LAN T ,et al. CRED:cloud right-sizing with execution deadlines and data locality[J]. IEEE Transactions on Parallel and Distributed Systems, 2017,28(12): 3389-3400. |
[47] | TAYLOR B , MARCO V S , WOLFF W ,et al. Adaptive deep learning model selection on embedded systems[C]// Proceedings of the 19th ACM SIGPLAN/SIGBED International Conference on Languages,Compilers,and Tools for Embedded Systems. New York:ACM Press, 2018,53(6): 31-43. |
[48] | KANG Y P , HAUSWALD J , GAO C ,et al. Neurosurgeon[J]. ACM SIGARCH Computer Architecture News, 2017,45(1): 615-629. |
[49] | KARSAVURAN M O , ACER S , AYKANAT C . Partitioning models for general medium-grain parallel sparse tensor decomposition[J]. IEEE Transactions on Parallel and Distributed Systems, 2021,32(1): 147-159. |
[1] | 耿光磊, 高博, 熊轲, 樊平毅, 陆杨, 王煜炜. 联邦学习赋能6G网络综述[J]. 物联网学报, 2023, 7(2): 50-66. |
[2] | 郅佳琳, 滕颖蕾, 张新阳, 牛涛, 宋梅. 基于DNN卷积核分割的边缘协作推理性能分析[J]. 物联网学报, 2022, 6(4): 72-81. |
[3] | 徐宣哲, 宁珂, 郑学敏, 赵明心, 徐萌萌, 吴南健, 刘力源. 基于硬件仿真系统的边缘计算人工智能视觉芯片设计验证[J]. 物联网学报, 2022, 6(1): 20-28. |
[4] | 姚誉, 李妍洁, 吴乐南, 苗圃, 唐小渝. 面向车联网的认知雷达通信复合波形设计[J]. 物联网学报, 2021, 5(4): 71-80. |
[5] | 张建波, 王宇, 聂雪军, 吴国庆, 刘久军, 严俊. 智慧渔业时代的深远海养殖平台控制系统[J]. 物联网学报, 2021, 5(4): 120-136. |
[6] | 冯心欣, 郭丹颖, 柳泽烽, 郑海峰. 结合聚类与CMAB的群智感知车联网任务分配方法[J]. 物联网学报, 2021, 5(3): 86-96. |
[7] | 王曼竹, 李梓琦, 陈翌飞, 洪高风, 苏伟. 车联网中安全认证技术的分析与研究[J]. 物联网学报, 2021, 5(3): 106-114. |
[8] | 石光明, 肖泳, 李莹玉, 高大化, 谢雪梅. 面向万物智联的语义通信网络[J]. 物联网学报, 2021, 5(2): 26-36. |
[9] | 林椿珉, 曾烈康, 陈旭. 边缘智能驱动的高能效无人机自主导航算法研究[J]. 物联网学报, 2021, 5(2): 87-96. |
[10] | 杜剑波, 薛哪哪, 孙艳, 姜静, 李树磊, 卢光跃. 基于NOMA的车辆边缘计算网络优化策略[J]. 物联网学报, 2021, 5(1): 19-26. |
[11] | 韩青, 高昆仑, 赵婷, 陈江琦, 杨新宇, 杨树森. 边云协同智能技术在电力领域的应用[J]. 物联网学报, 2021, 5(1): 62-71. |
[12] | 沈学民,承楠,周海波,吕丰,权伟,时伟森,吴华清,周淙浩. 空天地一体化网络技术:探索与展望[J]. 物联网学报, 2020, 4(3): 3-19. |
[13] | 郭彩丽,陈九九,宣一荻,张荷. 动态时空数据驱动的认知车联网频谱感知与共享技术研究[J]. 物联网学报, 2020, 4(3): 96-105. |
[14] | 李萌,司成祥,祝烈煌. 基于区块链的安全车联网数字取证系统[J]. 物联网学报, 2020, 4(2): 49-57. |
[15] | 周洋程,闫实,彭木根. 意图驱动的6G无线接入网络[J]. 物联网学报, 2020, 4(1): 72-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|