物联网学报 ›› 2020, Vol. 4 ›› Issue (3): 3-19.doi: 10.11959/j.issn.2096-3750.2020.00142
• 专题:智慧交通物联网 • 下一篇
沈学民1,承楠2(),周海波3,吕丰4,权伟5,时伟森1,吴华清1,周淙浩1
修回日期:
2020-07-07
出版日期:
2020-09-30
发布日期:
2020-09-07
作者简介:
沈学民(1958- ),男,博士,中国工程院外籍院士,加拿大工程院、工程研究院院士以及皇家学会会士,加拿大滑铁卢大学教授,IEEE Fellow。主要研究方向为空天地一体化网络、车联网、网络安全、人工智能及智能电网等。现为IEEE通信学会副主席、Peer-to-Peer Networking and Applications主编,曾担任IEEE Internet of Things Journal主编、IEEE Board of Governor 成员、IEEE Distinguished Lecturers Selection Committee主席等职务。曾担任多个国际会议的TPC主席/合作主席,包括IEEE GLOBECOM 2016、INFOCOM 2014、VTC-Fall 2010等|承楠(1987- ),男,博士,西安电子科技大学教授、博士生导师,主要研究方向为空天地一体化网络、车联网、未来无线网络、人工智能等。参与多项国家重点课题,包括国家自然科学基金资助项目、国家863课题等。现担任国际期刊 Peer-to-Peer Networking and Applications 以及 IEEE Open Journal of Vehicular Technology编委,现/曾担任多个国际会议程序委员会成员|周海波(1985- ),男,博士,南京大学副教授、博士生导师、特聘研究员,主要研究方向为异构无线网络融合与跨学科创新。现担任 IEEE Internet of Things Journal、IEEE Network Magazine、IEEE Wireless Communications Letters 3本国际期刊的编委以及多个国际重要会议技术程序委员会委员,目前是IEEE高级会员和中国电子学会高级会员|吕丰(1990- ),男,博士,中南大学特聘教授,主要研究方向为车联网(物联网)、大数据科学与工程、移动网络计算、空天地一体化网络。以技术骨干身份参与多项国家重点基金资助项目与课题,包括国家自然科学基金资助项目、国家863课题、国家科技部重点研发计划等。现/曾担任多个国际会议程序委员会成员及十余个 SCI 期刊审稿人,目前是 IEEE/ACM 会员和中国通信学会高级会员|权伟(1987- ),男,博士,北京交通大学副教授、博士生导师,主要研究方向为未来网络体系与传输理论、智慧车联网等。现担任IEEE Access、IET Networks、Peer-to-Peer Networking and Applications 3 本国际期刊的编委以及多个国际重要会议技术程序委员会委员,目前是中国通信学会高级会员、中国人工智能学会高级会员|时伟森(1991- ),男,博士,华为技术有限公司加拿大研究中心研发工程师,主要研究方向为空天地一体化通信网络、无人机轨迹规划、组网通信、未来无线接入网资源分配等|吴华清(1992-),女,加拿大滑铁卢大学博士生,主要研究方向为车联网、边缘缓存、资源管理和空天地一体化网络等|周淙浩(1994- ),男,加拿大滑铁卢大学博士生,主要研究方向为空天地一体化网络和机器学习在无线网络中的应用
基金资助:
Xuemin(Sherman) SHEN1,Nan CHENG2(),Haibo ZHOU3,Feng LYU4,Wei QUAN5,Weisen SHI1,Huaqing WU1,Conghao ZHOU1
Revised:
2020-07-07
Online:
2020-09-30
Published:
2020-09-07
Supported by:
摘要:
随着信息技术的不断发展,信息服务的空间范畴不断扩大,各种天基、空基、海基、地基网络服务不断涌现,对多维综合信息资源的需求也逐步提升。空天地一体化网络可以为陆海空天用户提供无缝信息服务,满足未来网络对全时全域全空通信和网络互联互通的需求。首先,对空天地一体化网络技术及协议体系的发展趋势进行了分析,探讨了低轨卫星通信系统以及空地网络融合的研究进展。针对网络结构复杂、动态性高、资源高度约束等问题,提出了基于强化学习(RL,reinforcement learning)的空天地一体化网络设计与优化框架,以进行高效快速的网络设计、分析、优化与管控。同时给出了实例分析,阐明了利用深度强化学习(DRL,deep RL)进行空天地一体化网络智能接入选择的方法。并通过搭建空天地一体化网络仿真平台,解决了网络观测稀疏与训练数据难以获取的问题,极大地提升了RL的训练效率。最后,对空天地一体化网络中的潜在研究方向进行了探讨。
中图分类号:
沈学民,承楠,周海波,吕丰,权伟,时伟森,吴华清,周淙浩. 空天地一体化网络技术:探索与展望[J]. 物联网学报, 2020, 4(3): 3-19.
Xuemin(Sherman) SHEN,Nan CHENG,Haibo ZHOU,Feng LYU,Wei QUAN,Weisen SHI,Huaqing WU,Conghao ZHOU. Space-air-ground integrated networks:review and prospect[J]. Chinese Journal on Internet of Things, 2020, 4(3): 3-19.
表1
天地网络融合标准进展情况"
标准组织 | 标准编号 | 主要研究内容 |
3GPP | TR 38.913(2016.01—2018.07) | 旨在开发下一代接入技术的部署场景和需求,并提出了将卫星网络作为地基网络扩展的场景 |
TS 22.261(2016.10—2020.03) | 研究了5G网络系统的新功能、市场需求以及满足上述需求所必需的性能指标和基本功能要求 | |
TR 22.891(2015.09—2016.09) | 提出了使用卫星进行5G网络连接的场景,并指出当前地基网络技术需要进行的提升 | |
TR 23.799(2016.01—2016.12) | 将通过卫星的5G网络连接列为下一代移动网络系统架构中的关键问题 | |
TR 38.811(2017.05—2019.10) | 研究了5G卫星网络的作用、业务特性、网络结构、部署场景和非地基网络信道模型,并对卫星网络的潜在应用进行分析 | |
TR 22.822(2017.12—2018.07) | 提出了基于5G卫星网络的架构,并确定了未来以及现有的服务需求以及卫星和地基网络之间切换的监管问题 | |
ETSI | TR 103 124(2013.07) | 确定了结合卫星网络和地基网络场景的定义和分类 |
TR 102 641(2008.08—2013.08) | 提出了卫星网络在灾害管理中的作用,并列出了不同卫星应用的资源需求 | |
TR 103 263(2014.07—2016.02) | 确定了在卫星通信中引入CR技术时须遵守的法规,并强调了在Ka波段使用CR技术的不同场景 | |
TR 103 351(2017.07) | 解决了无线接入网中的流量分配问题和乡郊地区的回程问题 | |
TR 103 293(2015.07) | 细化了卫星网络与3G毫微微基站的合作,并提供了大量使用卫星地基网络的回程解决方案 | |
TS 102 357(2005.05—2015.05) | 提出了SI-SAP并规范了卫星地基网络中宽带服务的物理空中接口 | |
CEPT | ECC Report 280(2018.05) | 报告了5G集成网络中卫星网络的功能定位以及基于卫星的几种典型用例 |
DVB | DVB规范 | 将卫星视为向地面提供数字电视和IP服务的广播者,提出了一系列技术标准 |
CCSDS | CCSD推荐标准 | 针对空间通信特点,制定了适合卫星通信的空间通信协议标准 |
[1] | 3GPP.Study on New Radio (NR) to support non-terrestrial networks:TR 38.811 V15.2.0[S]. 2019. |
[2] | 科塔学术.天地一体化信息网络重大工程立项建议[EB/OL]. |
[3] | CHEN M Z , CHALLITA U , SAAD W ,et al. Artificial neural networks-based machine learning for wireless networks:a tutorial[J]. arXiv:1710.02913, 2017 |
[4] | LIOLIS K , SCHLUETER G , KRAUSE J ,et al. Cognitive radio scenarios for satellite communications:the CoRaSat approach[C]// 2013 Future Network and Mobile Summit. IEEE, 2013: 1-10. |
[5] | European Union. SANSA[EB/OL]. . |
[6] | European Union. VIrtualized hybrid satellite-TerrestriAl systems for resilient and flexible future networks[EB/OL]. . |
[7] | European Space Agency. SATNEX IV[EB/OL]. . |
[8] | European Union. SaT5G[EB/OL]. . |
[9] | SATis5 Consortium. SATis5 Consortium.SATis5[EB/OL]. . |
[10] | KOTA S , GIAMBENE G , KIM S . Satellite component of NGN:integrated and hybrid networks[J]. International Journal of Satellite Communications and Networking, 2011,29(3): 191-208. |
[11] | WANG Y , XU Y C , ZHANG Y ,et al. Hybrid satellite-aerial-terrestrial networks in emergency scenarios:a survey[J]. China Communications, 2017,14(7): 1-13. |
[12] | ZHANG N , ZHANG S , YANG P ,et al. Software defined space-airground integrated vehicular networks:challenges and solutions[J]. IEEE Communications Magazine, 2017,55(7): 101-109. |
[13] | CHENG N , QUAN W , SHI W S ,et al. A comprehensive simulation platform for space-air-ground integrated network[J]. IEEE Wireless Communications, 2020,27(1): 178-185. |
[14] | WANG P , ZHANG J X , ZHANG X ,et al. Convergence of satellite and terrestrial networks:a comprehensive survey[J]. IEEE Access, 2020,8: 5550-5588. |
[15] | 3GPP.Study on scenarios and requirements for next generation access technologies:TR 38.913 V15.0.0[S]. 2018. |
[16] | 3GPP.Service requirements for the 5G system:TS 22.261 V17.2.0[S]. 2020. |
[17] | 3GPP.Study on new services and markets technology enablers:TR 22.891 V14.2.0[S]. 2016. |
[18] | 3GPP.Study on architecture for next generation system:TR 23.799 V14.0.0[S]. 2016. |
[19] | 3GPP.Study on using satellite access in 5G:TR 22.822 V16.0.0[S]. 2018. |
[20] | ETSI.Satellite earth stations and systems (SES); combined satellite and terrestrial networks scenarios:TR 103 124 V1.1.1[S]. 2013. |
[21] | ETSI.Satellite earth stations and systems (SES); overview of present satellite emergency communications resources:TR 102 641 V1.2.2[S]. 2013. |
[22] | ETSI.System reference document (SRdoc); cognitive radio techniques for satellite communications operating in Ka band:TR 103 263 V1.2.1[S]. 2016. |
[23] | ETSI.Satellite earth stations and systems (SES); multi-link routing scheme in hybrid access network with heterogeneous links:TR 103 351 V1.1.1[S]. 2017. |
[24] | ETSI.Broadband radio access networks (BRAN); broadband wireless access and backhauling for remote rural communities:TR 103 293 V1.1.1[S]. 2015. |
[25] | ETSI.Satellite earth stations and systems (SES); broadband satellite multimedia (BSM); common air interface specification; satellite independent service access point (SI-SAP) interface:primitives:TS 102 357 V1.2.1[S]. 2015. |
[26] | ECC Report 280.Satellite solutions for 5G[EB/OL]. . |
[27] | ETSI, CENELEC, EBU, et al. DVB Specifications[EB/OL]. . |
[28] | CCSDS. Blue books:recommended standards[EB/OL]. . |
[29] | SUTTON R , BARTO A . Reinforcement learning:an introduction[M]. London: The MIT PressPress, 1998. |
[30] | SILVER D , SCHRITTWIESER J , SIMONYAN K ,et al. Mastering the game of Go without human knowledge[J]. Nature, 2017,550(7676): 354-359. |
[31] | LUONG N , HOANG D , GONG S ,et al. Applications of deep reinforcement learning in communications and networking:a survey[J]. IEEE Communications Surveys & Tutorials, 2019,21(4): 3133-3174. |
[32] | LIU J J , SHI Y P , FADLULLAH Z M ,et al. Space-air-ground integrated network:a survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2714-2741. |
[33] | KATO N , FADLULLAH Z M , TANG F X ,et al. Optimizing space-airground integrated networks by artificial intelligence[J]. IEEE Wireless Communications, 2019,26(4): 140-147. |
[34] | FOERSTER J , NARDELLI N , FARQUHAR G ,et al. Stabilising experience replay for deep multi-agent reinforcement learning[C]// International Conference on Machine Learning. 2017: 1146-1155. |
[35] | KULKARNI T D , NARASIMHAN K R , SAEEDI A ,et al. Hierarchical deep reinforcement learning:integrating temporal abstraction and intrinsic motivation[C]// Conference and Workshop on Neural Information Processing Systems. 2016: 3675-3683. |
[36] | YIN S X , ZHAO S , ZHAO Y F ,et al. Intelligent trajectory design in UAV-aided communications with reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2019,68(8): 8227-8231. |
[37] | HU J Z , ZHANG H L , SONG L Y . Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-andsend protocol[J]. IEEE Internet of Things Journal, 2019,6(4): 6177-6189. |
[38] | CHEN M T , ZHANG Y , TENG Y L ,et al. Reinforcement learning based signal quality aware handover scheme for LEO satellite communication networks[C]// International Conference on Human Centered Computing. Springer, 2019: 44-55. |
[39] | LIU S J , HU X , WANG W D . Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems[J]. IEEE Access, 2018,6: 15733-15742. |
[40] | FERREIRA P V R , PAFFENROTH R , WYGLINSKI A M ,et al. Multi-objective reinforcement learning for cognitive satellite communications using deep neural network ensembles[J]. IEEE Journal on Selected Areas in Communications, 2018,36(5): 1030-1041. |
[41] | CHEN M Z , SAAD W , YIN C C ,et al. Data correlation-aware resource management in wireless virtual reality (VR):an echo state transfer learning approach[J]. IEEE Transactions on Communications, 2019,67(6): 4267-4280. |
[42] | FU S , GAO J , ZHAO L . Integrated resource management for terrestrial-satellite systems[J]. IEEE Transactions on Vehicular Technology, 2020,69(3): 3256-3266. |
[43] | CAO Y , ZHANG L , LIANG Y C . Deep reinforcement learning for multi-user access control in UAV networks[C]// 2019 IEEE International Conference on Communications (ICC). IEEE, 2019: 1-6. |
[44] | HU J Z , ZHANG H L , SONG L Y ,et al. Reinforcement learning for a cellular Internet of UAVs:protocol design,trajectory control,and resource management[J]. IEEE Wireless Communications, 2020,27(1): 116-123. |
[45] | CHENG N , LYU F , QUAN W ,et al. Space/aerial-assisted computing offloading for IoT applications:a learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019,37(5): 1117-1129. |
[46] | CHEN M Z , SAAD W , YIN C C . Echo-liquid state deep learning for 360° content transmission and caching in wireless VR networks with cellular-connected UAVs[J]. IEEE Transactions on Communications, 2019,67(9): 6386-6400. |
[47] | 赵亚军, 郁光辉, 徐汉青 . 6G移动通信网络:愿景、挑战与关键技术[J]. 中国科学:信息科学, 2019: 963-987. |
ZHAO Y J , YU G H , XU H Q . 6G mobile communication network:vision,challenges and key technologies[J]. Scientia Sinica (Informationis), 2019: 963-987. | |
[48] | PAPA A , DECOLA T , VIZARRETA P ,et al. Dynamic SDN controller placement in a LEO constellation satellite network[C]// 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018: 206-212. |
[49] | AHMED T , ALLEG A , FERRUS R ,et al. On-demand network slicing using SDN/NFV-enabled satellite ground segment systems[C]// 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE, 2018: 242-246. |
[50] | KU H J , JUNG J H , KWON G I . A study on reinforcement learning based SFC path selection in SDN/NFV[J]. International Journal of Applied Engineering Research, 2017,12(12): 3439-3443. |
[51] | XIAO Y , ZHANG Q , LIU F ,et al. NFVdeep:adaptive online service function chain deployment with deep reinforcement learning[C]// The International Symposium on Computer Science,Computer Engineering and Educational Technology. 2019: 1-10. |
[52] | FOONG K C , . Mobility management for satellite/terrestrial multi-service convergence networks[C]// 2009 International Conference on Communication Software and Networks. IEEE, 2009: 362-366. |
[53] | RUIZ DE AZUA J A , CALVERAS A , CAMPS A . Internet of satellites (IoSat):analysis of network models and routing protocol requirements[J]. IEEE Access, 2018,6: 20390-20411. |
[1] | 王志宏, 冷甦鹏, 熊凯. 面向无人机集群协同感知的多智能体资源分配策略[J]. 物联网学报, 2023, 7(1): 18-26. |
[2] | 江恺, 曹越, 周欢, 任学锋, 朱永东, 林海. 车联网边缘智能:概念、架构、问题、实施和展望[J]. 物联网学报, 2023, 7(1): 37-48. |
[3] | 廖岑卉珊, 陈俊彦, 梁观平, 谢小兰, 卢小烨. 基于深度强化学习的SDN服务质量智能优化算法[J]. 物联网学报, 2023, 7(1): 73-82. |
[4] | 张彪, 汪西明, 徐逸凡, 李文, 韩昊, 刘松仪, 陈学强. 基于多智能体深度强化学习的多域协同抗干扰方法研究[J]. 物联网学报, 2022, 6(4): 104-116. |
[5] | 张欢欢, 周安福, 马华东. 基于强化学习的实时视频流控与移动终端训练方法研究[J]. 物联网学报, 2022, 6(4): 1-13. |
[6] | 陈九九, 郭彩丽, 冯春燕, 刘传宏. 智能网联环境下面向语义通信的资源分配[J]. 物联网学报, 2022, 6(3): 47-57. |
[7] | 俞汉清, 林艳, 贾林琼, 李强, 张一晋. 面向多目标救援的通信受限无人机集群分布式策略[J]. 物联网学报, 2022, 6(3): 103-112. |
[8] | 罗梓珲, 江呈羚, 刘亮, 郑霄龙, 马华东. 基于深度强化学习的智能车间调度方法研究[J]. 物联网学报, 2022, 6(1): 53-64. |
[9] | 姚誉, 李妍洁, 吴乐南, 苗圃, 唐小渝. 面向车联网的认知雷达通信复合波形设计[J]. 物联网学报, 2021, 5(4): 71-80. |
[10] | 冯心欣, 郭丹颖, 柳泽烽, 郑海峰. 结合聚类与CMAB的群智感知车联网任务分配方法[J]. 物联网学报, 2021, 5(3): 86-96. |
[11] | 王曼竹, 李梓琦, 陈翌飞, 洪高风, 苏伟. 车联网中安全认证技术的分析与研究[J]. 物联网学报, 2021, 5(3): 106-114. |
[12] | 林椿珉, 曾烈康, 陈旭. 边缘智能驱动的高能效无人机自主导航算法研究[J]. 物联网学报, 2021, 5(2): 87-96. |
[13] | 杜剑波, 薛哪哪, 孙艳, 姜静, 李树磊, 卢光跃. 基于NOMA的车辆边缘计算网络优化策略[J]. 物联网学报, 2021, 5(1): 19-26. |
[14] | 滕颖蕾,李鑫,王剑,蔡伯根,宋梅. 基于SDN的铁路系统空天地融合网络架构[J]. 物联网学报, 2020, 4(3): 30-41. |
[15] | 郭彩丽,陈九九,宣一荻,张荷. 动态时空数据驱动的认知车联网频谱感知与共享技术研究[J]. 物联网学报, 2020, 4(3): 96-105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|